zirconia powder
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 15)

H-INDEX

23
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7873
Author(s):  
Cho-Pei Jiang ◽  
M Fahrur Rozy Hentihu ◽  
Yung-Chang Cheng ◽  
Tzu-Yi Lei ◽  
Richard Lin ◽  
...  

This study proposes an innovative three-dimensional printing technology with submersion-light apparatus. A zirconia powder with an average particle size of 0.5 µm is mixed with 1,6-Hexanediol diacrylate (HDDA) and photo-initiator to form a slurry. The weight percentage of zirconia powder to HDDA is 70:30 wt.%. A light engine box is submerged in a slurry and emits a layered pattern to induce photopolymerization and transform a slurry into a printed green body. Green body sintering parameters for the first and second stages are 380 °C with a holding time of 1.5 h and 1550 °C with a holding time of 2 h. The sintered parts’ length, width, and height shrinkage ratios are 29.9%, 29.7%, and 30.6%. The ball milling decreases the powder particle size to 158 ± 16 nm and the mean grain size of the sintered part is 423 ± 25 nm. The sintered part has an average hardness of 1224 (HV), a density of 5.45 g/cm3, and a flexural strength of 641.04 MPa. A three-unit zirconia dental bridge also has been fabricated with a clinically acceptable marginal gap.


2020 ◽  
Vol 20 (9) ◽  
pp. 5575-5578
Author(s):  
Eunkyung Lee ◽  
Yangho Lee ◽  
Young Kyung Kim ◽  
Chan Ho Park ◽  
Tae-Yub Kwon

The adhesion property of zirconia powder-incorporated primers was investigated in vitro with the aim of enhancing the resin bond strength to zirconia ceramic. A commercial zirconia primer was modified through the addition of 0 (control), 5, 10, 25, and 50 wt% of a zirconia powder (codes: ZP0, ZP5, ZP10, ZP25, and ZP50, respectively). Prior to primer modification, the powder was characterized via differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectrophotometry. The surfaces of dental zirconia ceramic discs were air-abraded and treated with one of the five primers. One resin composite cylinder (diameter: 2.38 mm) was bonded on one specimen surface (n = 12/group). The bonded specimens were all stored for 24 h in distilled water at 37 °C and subjected to 5000 thermal cycles prior to shear bond strength (SBS) testing. The DSC and FTIR analyses confirmed that the zirconia powder contained an organic binder. The SBS test results showed that the groups could be arranged as follows, ZP25 > ZP10 > ZP5 > ZP0, i.e., in descending order of the mean value. The lowest SBS value was obtained for the ZP50 group. The results suggest that the incorporation of a zirconia powder into a primer represents a promising modification method for improving the resin bond strength to zirconia ceramic.


2020 ◽  
Vol 852 ◽  
pp. 119-128
Author(s):  
Liang Zhao ◽  
Qian Huang ◽  
Hua Yin Sun ◽  
Xiang Li

Partially stabilized zirconia (PSZ) materials were fabricated using 4 wt% CaO, 3 wt% MgO, and 5.4 wt% Y2O3 as stabilizing agents together with monoclinic zirconia powder. The physical properties, phase compositions, and microstructures of the Ca-PSZ, Mg-PSZ, and Y-PSZ samples were investigated by X-ray diffraction, scanning electron microscopy, and energy spectrum analysis. A crucible method was used to explore the relationship between the stabilizing agent and erosion resistance to alkaline steel slag. The results revealed that the zirconia materials stabilized by different stabilizing agents showed obvious differences in their bulk densities, apparent porosities, microstructures, and erosion resistances to alkaline steel slag. The structure of Y-PSZ showed highest density, containing a small number of uniformly distributed pores. In terms of Mg-PSZ, the intergranular bonding in its structure was observed to not be close, and the sample contained some cracks, but no pores. A large number of intragranular pores and a small number of overall pores was observed in Ca-PSZ, resulting in this material having the lowest bulk density. The pores and cracks provide the path to penetrate and diffuse for alkaline steel slag, which weakens the corrosion resistance of PSZ materials. The phase composition of the affected layers in all of the samples after corrosion was almost completely transformed from monoclinic phase to cubic phase, and the phase transition of both the original and transition layers was not obvious due to the formation of a slag film. Y-PSZ did not react with components of the steel slag such as SiO2 and Al2O3, showing the best corrosion resistance to alkaline steel slag.


2020 ◽  
Vol 20 (4) ◽  
pp. 782
Author(s):  
Istikamah Subuki ◽  
Mimi Fazzlinda Mohsin ◽  
Muhammad Hussain Ismail ◽  
Fazira Suriani Mohamed Fadzil

The zircon powder from Zircon Minerals Malaysia is a pure premium grade zircon sand milled 1.5 µm that contain ZrSiO4, ZrO2, HfO2, SiO2, Al2O3, TiO2, and Fe2O3. The monoclinic zirconia powders were synthesized from the zircon sand of Zircon Minerals Malaysia, by caustic fusion method at calcination temperatures between 500 °C to 800 °C. The as-synthesized zirconia was characterized through X-Ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric and differential thermal analysis (TG-DTA), and X-Ray fluorescence (XRF) techniques. The XRD results show two monoclinic phases of microcrystalline zirconia. Zirconia that was calcined at 600 °C obtained the highest value of ZrO2, which was 54.48%; followed by zirconia calcined at 700 °C, 800 °C, and 500 °C, which obtained the ZrO2 values of 53.58%, 52.41%, and 51.53%, respectively, based on the XRF analysis. As-synthesized zirconia showed monoclinic phases where the surface areas were 0.0635 m2/g, 0.135 m2/g, 0.0268 m2/g, and 0.0288 m2/g, for zirconia calcined at temperatures of 500 °C, 600 °C, 700 °C, and 800 °C, respectively. The surface structure of the powder that had been calcined at 600 C showed similarities with the commercial zirconia. The similarities of the synthesized zirconia and commercial zirconia showed that the zirconia powder could be synthesized using zircon sand by caustic fusion method, even though the content of zirconia was lower compared to that of the commercial zirconia powder.


2020 ◽  
Vol 46 (7) ◽  
pp. 9691-9697 ◽  
Author(s):  
Guangdi Zhou ◽  
Peng Jin ◽  
Yuan Wang ◽  
Guangling Pei ◽  
Ju Wu ◽  
...  

2020 ◽  
Vol 32 (3) ◽  
pp. 555-560
Author(s):  
Amalia Kurnia Amin ◽  
Karna Wijaya ◽  
Wega Trisunaryanti

In this work, nickel promoted sulfated zirconia (Ni/SZ) as catalyst was prepared by either by reflux (Ni/SZ-R) or hydrothermal Ni impregnation (Ni/SZ-H) routes. The aim of this study was to evaluate the influences of two preparative methods on the physico-chemical properties of prepared catalysts. Both the catalysts were characterized by XRD, FTIR, ammonia adsorption, SEM-EDX, TEM-SAED, AAS and BET. It was found that the presence of sulfate and nickel could enhance the Brønsted and Lewis active acid sites. In relation to the effect of Ni impregnation method, acidity, amount of sulfate and Ni found in Ni/SZ-R were higher than those in Ni/SZ-H. Unfortunately, higher impregnated sulfate and nickel on zirconia support led to a decrease in surface area and pore volume and an increase in crystallite size of grainy aggregated mesoporous nickel promoted sulfated zirconia (Ni/SZ).


Author(s):  
N.Yu. Peretyagin ◽  
N.W. Solis Pinargote ◽  
P.Y. Peretyagin ◽  
A.E. Seleznev

2019 ◽  
Vol 829 ◽  
pp. 54-59
Author(s):  
Atia Nurul Sidiqa ◽  
Andri Hardiansyah ◽  
Elsy Rahimi Chaldun ◽  
Hartanto Endro

Various bioceramic materials including zirconia and hydroxyapatite have been developed for various applications. Hydroxyapatite (Ca10(PO4)6(OH)2, HAp) is one of the most interesting features of calcium phosphate-based bioceramic that widely used in various applications especially for bio-application, bone engineering, and dentistry. However, the applications of pristine HAp have limited due to low load bearing applications. The wet chemical precipitation techniques was used to synthesize the solids based on zirconia. Hydroxyapatite and zirconia powder (0-30 weight %) were mixed homogeneously. Structure and morphological were characterized by SEM JEOL-JSM-T330A. The presence of functional group was observed by FTIR. Hardness value of material was measured by using Vickers hardness test measurement. Through this techniques, pure hydroxyapatite precipitate was obtained. Sintering temperature is an important factor that could influence the hardness of zirconia-doped hydroxyapatite. Based on the SEM observation, zirconia-doped hydroxyapatite were developed in blended morphology. FTIR results shows the interaction between hydroxyapatite and zirconia. Increasing zirconia increased the hardness value of zirconia-doped hydroxyapatite. Eventually, these ceramic-based materials could be developed for dental materials applications.


Sign in / Sign up

Export Citation Format

Share Document