Selective transport of a cupric-nickel-cobalt ion ternary system through cation ion-exchange membranes with a complexing agent by dialysis

Desalination ◽  
2004 ◽  
Vol 164 (3) ◽  
pp. 269-280 ◽  
Author(s):  
Jau-Kai Wang ◽  
C.-P Chang
Separations ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 170
Author(s):  
Yuting Sun ◽  
Lianfa Song

Reverse electrodialysis is a promising membrane technology to generate energy from controlled mixing of water streams of different salinities. Electrical potentials generate on the ion exchange membranes (IEMs) when selective transport of cations and anions across the membranes driven by concentration difference. The accurate determination of the potentials developed on the IEMs is critical to fairly assess the feasibility of the technology. The Nernst–Planck–Poisson (NPP) equations for IEMs (the membranes with fixed charge) were solved numerically with the boundary updating scheme. The validity of this numerical method was verified by the identical values of Donnan potential obtained with the well-established analytical methods. The suitability and applicability of the classic Teorell–Meyer–Siever (TMS) model were assessed by comparison to the simulation results from the numerical method.


1992 ◽  
Vol 57 (9) ◽  
pp. 1905-1914
Author(s):  
Miroslav Bleha ◽  
Věra Šumberová

The equilibrium sorption of uni-univalent electrolytes (NaCl, KCl) in heterogeneous cation exchange membranes with various contents of the ion exchange component and in ion exchange membranes Ralex was investigated. Using experimental data which express the concentration dependence of equilibrium sorption, validity of the Donnan relation for the systems under investigation was tested and values of the Glueckauf inhomogeneity factor for Ralex membranes were determined. Determination of the equilibrium sorption allows the effect of the total content of internal water and of the ion-exchange capacity on the distribution coefficients of the electrolyte to be determined.


Desalination ◽  
2020 ◽  
Vol 482 ◽  
pp. 114384
Author(s):  
Katarzyna Smolinska-Kempisty ◽  
Anna Siekierka ◽  
Marek Bryjak

Chemosphere ◽  
2021 ◽  
pp. 130817
Author(s):  
Shanxue Jiang ◽  
Haishu Sun ◽  
Huijiao Wang ◽  
Bradley P. Ladewig ◽  
Zhiliang Yao

Sign in / Sign up

Export Citation Format

Share Document