inhomogeneity factor
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 1)

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 189
Author(s):  
Bing Fu ◽  
Li Xiang ◽  
Jia-Long Qiao ◽  
Hai-Jun Wang ◽  
Jing Liu ◽  
...  

Based on low-temperature high-permeability grain-oriented silicon steel designed with an initial nitrogen content of 0.0055% and produced by the thin slab casting and rolling process, the effect of total nitrogen content and nitriding temperature on primary recrystallization microstructure and texture were studied by optical microscope, scanning electron microscope, transmission electron microscope, and electron backscatter diffraction. The nitriding temperature affects the primary recrystallization behaviors significantly, while the total nitrogen content has a small effect. As the nitriding temperature is 750–850 °C, the average primary grain size and its inhomogeneity factor are about 26.58–26.67 μm and 0.568–0.572, respectively. Moreover, the texture factor is mostly between 0.15 and 0.40. Because of the relatively sufficient inhibition ability of inherent inhibitors in a decarburized sheet, the nitriding temperature (750–850 °C) affects the primary recrystallization microstructure and texture slightly. However, as the nitriding temperature rises to 900–950 °C, the average primary grain size and its inhomogeneity factor increase to 27.75–28.26 μm and 0.575–0.578, respectively. Furthermore, because of the great increase on the area fraction of {112} <110> grains, part of texture factor is increased sharply. Therefore, in order to obtain better primary grain size and homogeneity, better texture composition, and stability of the decarburized sheet, the optimal nitriding temperature is 750–850 °C.


Laser Physics ◽  
2020 ◽  
Vol 30 (3) ◽  
pp. 035001 ◽  
Author(s):  
Si Chen ◽  
Chi Feng ◽  
Yuan Dong ◽  
Guangyong Jin

2019 ◽  
Vol 34 (27) ◽  
pp. 1950215 ◽  
Author(s):  
M. Farasat Shamir ◽  
Nabeeha Uzair

The aim of this paper is to examine the irregularity factors of a self-gravitating stellar system in the existence of anisotropic fluid. We investigate the dynamics of field equations within [Formula: see text] background, where [Formula: see text] is the Gauss–Bonnet invariant and [Formula: see text] is the trace of the energy–momentum tensor. Moreover, we have investigated two differential equations using the conservation law and the Weyl tensor. We have determined the irregularity factors of spherical stellar system for some specific conditions of anisotropic and isotropic fluids, dust, radiating and non-radiating systems in [Formula: see text] gravity. It has been noted that the dissipative matter results in anisotropic stresses and makes the system more complex. The inhomogeneity factor is correlated to one of the scalar functions.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1964 ◽  
Author(s):  
Stephanie Haegele ◽  
Farzaneh Vahidi ◽  
Stefan Tenbohlen ◽  
Kevin Rapp ◽  
Alan Sbravati

Due to the low biodegradability of mineral oil, intense research is conducted to define alternative liquids with comparable dielectric properties. Natural ester liquids are an alternative in focus; they are used increasingly as insulating liquid in distribution and power transformers. The main advantages of natural ester liquids compared to mineral oil are their good biodegradability and mainly high flash and fire points providing better fire safety. The dielectric strength of natural ester liquids is comparable to conventional mineral oil for homogeneous field arrangements. However, many studies showed a reduced dielectric strength for highly inhomogeneous field arrangements. This study investigates at which degree of inhomogeneity differences in breakdown voltage between the two insulating liquids occur. Investigations use lightning impulses with different electrode arrangements representing different field inhomogeneity factors and different gap distances. To ensure comparisons with existing transformer geometries, investigations are application-oriented using a transformer conductor model, which is compared to other studies. Results show significant differences in breakdown voltage from an inhomogeneity factor of 0.1 (highly inhomogeneous field) depending on the gap distance. Larger electrode gaps provide a larger inhomogeneity at which differences in breakdown voltages occur.


Author(s):  
H Saeidi Googarchin ◽  
B Teimouri ◽  
R Hashemi

In this paper, a hybrid experimental-numerical approach was developed to analyze the constrained groove pressing and constrained groove pressing–cross route process on AA5052 sheets which are comprehensively used to produce body in white and closure panels and beams of the automotive. The microstructure and mechanical properties were evaluated using scanning electron microscopy, tensile tests, and microhardness measurements. Then, the developed procedure was used to predict the mechanical properties of the sheets fabricated by constrained groove pressing process. This enabled the evaluation of the effects of the groove angle, width, and height of the die on strength and hardness of the processed sheets. To complete the conceptual design of the grooved dies, the Taguchi method was used to optimize the die design. The obtained results show that the inhomogeneity factor in the sheets processed by constrained groove pressing–cross route is less than those processed by constrained groove pressing. The analysis indicates that the developed procedure would result in an acceptable prediction of the material behavior of the processed sheets. The procedure could save a great deal of time and is economical in the matter of design. Finally, the procedure in conjunction with Taguchi method would lead to an optimum die design to enrich the processed sheets.


2018 ◽  
Vol 33 (13) ◽  
pp. 1850076 ◽  
Author(s):  
A. Akram ◽  
S. Ahmad ◽  
A. Rehman Jami ◽  
M. Sufyan ◽  
U. Zahid

This work is devoted to the study of some dynamical features of spherical relativistic locally anisotropic stellar geometry in f(R) gravity. In this paper, a specific configuration of tanh f(R) cosmic model has been taken into account. The mass function through technique introduced by Misner–Sharp has been formulated and with the help of it, various fruitful relations are derived. After orthogonal decomposition of the Riemann tensor, the tanh modified structure scalars are calculated. The role of these tanh modified structure scalars (MSS) has been discussed through shear, expansion as well as Weyl scalar differential equations. The inhomogeneity factor has also been explored for the case of radiating viscous locally anisotropic spherical system and spherical dust cloud with and without constant Ricci scalar corrections.


Author(s):  
Xiaofeng Yang ◽  
Tang-Wei Kuo ◽  
Orgun Guralp ◽  
Ronald O. Grover ◽  
Paul Najt

Intake port flow performance plays a substantial role in determining the volumetric efficiency and in-cylinder charge motion of a spark-ignited engine. Steady-state flow bench and motored engine flow CFD simulations were carried out to bridge these two approaches for the evaluation of port flow and charge motion (such as discharge coefficient, swirl/tumble ratios). A one dimensional block analytical model was used to mimic the downstream honeycomb in a flow bench experiment, which forced the flow motion in one direction. The intake port polar velocity profile and polar physical clearance profile were generated to evaluate the port performance based on local flow velocity and physical clearance in the valve-seat region. The measured data were taken from standard steady-state flow bench tests of an intake port. When using an appropriate mesh resolution near the walls, the steady-state flow bench simulation predicted that discharge coefficient and swirl/tumble index are in agreement with the measured data. It was reconfirmed that the predicted discharge coefficients and swirl/tumble index of steady flow bench simulations have a good correlation with those of motored engine flow simulations. The polar velocity inhomogeneity factor correlates well with the port discharge coefficient, swirl/tumble index. A port performance evaluation guideline was generated by taking advantage of steady flow bench and motored engine flow simulations and port polar velocity inhomogeneity factor.


2015 ◽  
Vol 11 (3) ◽  
pp. 424-436
Author(s):  
Rajneesh Kakar

Purpose – The purpose of this paper is to deal with the propagation of Love waves in inhomogeneous viscoelastic layer overlying a gravitational half-space. It has been observed velocity of Love waves depends on viscosity, gravity, inhomogeneity and initial stress of the layer. Design/methodology/approach – The dispersion relation for the Love wave in closed form is obtained with Whitaker’s function. Findings – The effect of various non-dimensional inhomogeneity factors, gravity factor and internal friction on the non-dimensional Love wave velocity has been shown graphically. The authors observed that the dispersion curve of Love wave increases as the inhomogeneity factor increases. It is seen that increment in gravity, inhomogeneity and internal friction decreases the damping phase velocity of Love waves but it is more prominent in case of internal friction. Originality/value – Surface plot of Love wave reveals that the velocity ratio increases with the increase of non-dimensional phase velocity and non-dimensional wave number. The above results may attract seismologists and geologists.


2014 ◽  
Vol 29 (26) ◽  
pp. 1450129 ◽  
Author(s):  
M. Sharif ◽  
M. Zaeem Ul Haq Bhatti

In this work, we aim to identify the effects of electromagnetic field on the energy density inhomogeneity in self-gravitating plane symmetric spacetime filled with imperfect matter in terms of dissipation and anisotropic pressure. We formulate the Einstein–Maxwell field equation, conservation laws, evolution equations for the Weyl tensor and the transport equation for diffusion approximation. Inhomogeneity factors are identified for some particular cases of non-dissipative and dissipative fluids. For non-dissipative case, we analyze the inhomogeneity factor for dust, isotropic and anisotropic matter distributions while dissipative matter distribution includes the inhomogeneity factor only for geodesic dust fluid. We conclude that electric charge increases the inhomogeneity in the energy density which is due to shear, anisotropy and dissipation.


Sign in / Sign up

Export Citation Format

Share Document