scholarly journals Simple graphs containing induced subgraphs whose automorphism groups are isomorphic to subgroups of a given finite group

1999 ◽  
Vol 206 (1-3) ◽  
pp. 205-212
Author(s):  
N. Sridharan ◽  
G. Ramachandran
1981 ◽  
Vol 33 (2) ◽  
pp. 412-420 ◽  
Author(s):  
Martin R. Pettet

If A is a group acting on a set X and x ∈ X, we denote the stabilizer of x in A by CA(x) and let Γ(x) be the set of elements of X fixed by CA(x). We shall say the action of A is partitive if the distinct subsets Γ(x), x ∈ X, partition X. A special example of this phenomenon is the case of a semiregular action (when CA (x) = 1 for every x ∈ X so the induced partition is a trivial one). Our concern here is with the case that A is a group of automorphisms of a finite group G and X = G#, the set of non-identity elements of G. We shall prove that if A is nilpotent, then except in a very restricted situation, partitivity implies semiregularity.


1979 ◽  
Vol 28 (3) ◽  
pp. 335-345 ◽  
Author(s):  
Nicholas S. Ford

AbstractLet R be a commutative ring with identity, and let A be a finitely generated R-algebra with Jacobson radical N and center C. An R-inertial subalgebra of A is a R-separable subalgebra B with the property that B+N=A. Suppose A is separable over C and possesses a finite group G of R-automorphisms whose restriction to C is faithful with fixed ring R. If R is an inertial subalgebra of C, necessary and sufficient conditions for the existence of an R-inertial subalgebra of A are found when the order of G is a unit in R. Under these conditions, an R-inertial subalgebra B of A is characterized as being the fixed subring of a group of R-automorphisms of A. Moreover, A ⋍ B ⊗R C. Analogous results are obtained when C has an R-inertial subalgebra S ⊃ R.


1983 ◽  
Vol 26 (3) ◽  
pp. 297-306 ◽  
Author(s):  
K. D. Magill ◽  
P. R. Misra ◽  
U. B. Tewari

In [3] we initiated our study of the automorphism groups of a certain class of near-rings. Specifically, let P be any complex polynomial and let P denote the near-ring of all continuous selfmaps of the complex plane where addition of functions is pointwise and the product fg of two functions f and g in P is defined by fg=f∘P∘g. The near-ring P is referred to as a laminated near-ring with laminating element P. In [3], we characterised those polynomials P(z)=anzn + an−1zn−1 +…+a0 for which Aut P is a finite group. We are able to show that Aut P is finite if and only if Deg P≧3 and ai ≠ 0 for some i ≠ 0, n. In addition, we were able to completely determine those infinite groups which occur as automorphism groups of the near-rings P. There are exactly three of them. One is GL(2) the full linear group of all real 2×2 nonsingular matrices and the other two are subgroups of GL(2). In this paper, we begin our study of the finite automorphism groups of the near-rings P. We get a result which, in contrast to the situation for the infinite automorphism groups, shows that infinitely many finite groups occur as automorphism groups of the near-rings under consideration. In addition to this and other results, we completely determine Aut P when the coefficients of P are real and Deg P = 3 or 4.


1978 ◽  
Vol 25 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Richard J. Greechie

AbstractA construction is given for a non-desarguesian projective plane P and an absolute-point free polarity on P such that the group of collineations of P which commute with the polarity is isomorphic to an arbitrary preassigned finite group.


2015 ◽  
Vol 36 (1) ◽  
pp. 64-95 ◽  
Author(s):  
SEBASTIÁN DONOSO ◽  
FABIEN DURAND ◽  
ALEJANDRO MAASS ◽  
SAMUEL PETITE

In this article, we study the automorphism group$\text{Aut}(X,{\it\sigma})$of subshifts$(X,{\it\sigma})$of low word complexity. In particular, we prove that$\text{Aut}(X,{\it\sigma})$is virtually$\mathbb{Z}$for aperiodic minimal subshifts and certain transitive subshifts with non-superlinear complexity. More precisely, the quotient of this group relative to the one generated by the shift map is a finite group. In addition, we show that any finite group can be obtained in this way. The class considered includes minimal subshifts induced by substitutions, linearly recurrent subshifts and even some subshifts which simultaneously exhibit non-superlinear and superpolynomial complexity along different subsequences. The main technique in this article relies on the study of classical relations among points used in topological dynamics, in particular, asymptotic pairs. Various examples that illustrate the technique developed in this article are provided. In particular, we prove that the group of automorphisms of a$d$-step nilsystem is nilpotent of order$d$and from there we produce minimal subshifts of arbitrarily large polynomial complexity whose automorphism groups are also virtually$\mathbb{Z}$.


Author(s):  
Dmitry S. Malyshev

The vertex 3-colourability problem for a given graph is to check whether it is possible to split the set of its vertices into three subsets of pairwise non-adjacent vertices or not. A hereditary class of graphs is a set of simple graphs closed under isomorphism and deletion of vertices; the set of its forbidden induced subgraphs defines every such a class. For all but three the quadruples of 5-vertex forbidden induced subgraphs, we know the complexity status of the vertex 3-colourability problem. Additionally, two of these three cases are polynomially equivalent; they also polynomially reduce to the third one. In this paper, we prove that the computational complexity of the considered problem in all of the three mentioned classes is polynomial. This result contributes to the algorithmic graph theory.


2019 ◽  
Vol 19 (05) ◽  
pp. 2050097
Author(s):  
Shikun Ou ◽  
Dein Wong ◽  
Zhijun Wang

The inclusion graph of a finite group [Formula: see text], written as [Formula: see text], is defined to be an undirected graph that its vertices are all nontrivial subgroups of [Formula: see text], and in which two distinct subgroups [Formula: see text], [Formula: see text] are adjacent if and only if either [Formula: see text] or [Formula: see text]. In this paper, we determine the diameter of [Formula: see text] when [Formula: see text] is nilpotent, and characterize the independent dominating sets as well as the automorphism group of [Formula: see text].


1985 ◽  
Vol 28 (1) ◽  
pp. 84-90
Author(s):  
Jay Zimmerman

AbstractThe object of this paper is to exhibit an infinite set of finite semisimple groups H, each of which is the automorphism group of some infinite group, but of no finite group. We begin the construction by choosing a finite simple group S whose outer automorphism group and Schur multiplier possess certain specified properties. The group H is a certain subgroup of Aut S which contains S. For example, most of the PSL's over a non-prime finite field are candidates for S, and in this case, H is generated by all of the inner, diagonal and graph automorphisms of S.


2013 ◽  
Vol 16 (3) ◽  
Author(s):  
Gareth A. Jones

Abstract.A Beauville surface of unmixed type is a complex algebraic surface which is the quotient of the product of two curves of genus at least 2 by a finite group


Sign in / Sign up

Export Citation Format

Share Document