forbidden induced subgraphs
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 13)

H-INDEX

8
(FIVE YEARS 1)

10.37236/9961 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Pallabi Manna ◽  
Peter J. Cameron ◽  
Ranjit Mehatari

The undirected power graph (or simply power graph) of a group $G$, denoted by $P(G)$, is a graph whose vertices are the elements of the group $G$, in which two vertices $u$ and $v$ are connected by an edge between if and only if either $u=v^i$ or $v=u^j$ for some $i$, $j$. A number of important graph classes, including perfect graphs, cographs, chordal graphs, split graphs, and threshold graphs, can be defined either structurally or in terms of forbidden induced subgraphs. We examine each of these five classes and attempt to determine for which groups $G$ the power graph $P(G)$ lies in the class under consideration. We give complete results in the case of nilpotent groups, and partial results in greater generality. In particular, the power graph is always perfect; and we determine completely the groups whose power graph is a threshold or split graph (the answer is the same for both classes). We give a number of open problems.


10.37236/9428 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Martin Milanič ◽  
Nevena Pivač

A graph class is said to be tame if graphs in the class have a polynomially bounded number of minimal separators. Tame graph classes have good algorithmic properties, which follow, for example, from an algorithmic metatheorem of Fomin, Todinca, and Villanger from 2015. We show that a hereditary graph class $\mathcal{G}$ is tame if and only if the subclass consisting of graphs in $\mathcal{G}$ without clique cutsets is tame. This result and Ramsey's theorem lead to several types of sufficient conditions for a graph class to be tame. In particular, we show that any hereditary class of graphs of bounded clique cover number that excludes some complete prism is tame, where a complete prism is the Cartesian product of a complete graph with a $K_2$. We apply these results, combined with constructions of graphs with exponentially many minimal separators, to develop a dichotomy theorem separating tame from non-tame graph classes within the family of graph classes defined by sets of forbidden induced subgraphs with at most four vertices.


Author(s):  
Dmitry S. Malyshev

The vertex 3-colourability problem for a given graph is to check whether it is possible to split the set of its vertices into three subsets of pairwise non-adjacent vertices or not. A hereditary class of graphs is a set of simple graphs closed under isomorphism and deletion of vertices; the set of its forbidden induced subgraphs defines every such a class. For all but three the quadruples of 5-vertex forbidden induced subgraphs, we know the complexity status of the vertex 3-colourability problem. Additionally, two of these three cases are polynomially equivalent; they also polynomially reduce to the third one. In this paper, we prove that the computational complexity of the considered problem in all of the three mentioned classes is polynomial. This result contributes to the algorithmic graph theory.


2019 ◽  
Vol 168 (3) ◽  
pp. 567-600
Author(s):  
KARIM ADIPRASITO ◽  
ERAN NEVO ◽  
MARTIN TANCER

AbstractWe analyse the asymptotic extremal growth rate of the Betti numbers of clique complexes of graphs on n vertices not containing a fixed forbidden induced subgraph H.In particular, we prove a theorem of the alternative: for any H the growth rate achieves exactly one of five possible exponentials, that is, independent of the field of coefficients, the nth root of the maximal total Betti number over n-vertex graphs with no induced copy of H has a limit, as n tends to infinity, and, ranging over all H, exactly five different limits are attained.For the interesting case where H is the 4-cycle, the above limit is 1, and we prove a superpolynomial upper bound.


2019 ◽  
Vol 342 (6) ◽  
pp. 1602-1608
Author(s):  
Christoph Brause ◽  
Přemysl Holub ◽  
Adam Kabela ◽  
Zdeněk Ryjáček ◽  
Ingo Schiermeyer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document