scholarly journals Zero Mach number limit in critical spaces for compressible Navier–Stokes equations

2002 ◽  
Vol 35 (1) ◽  
pp. 27-75 ◽  
Author(s):  
R DANCHIN
2019 ◽  
Vol 22 (05) ◽  
pp. 1950041
Author(s):  
Boris Haspot

In this paper, we investigate the question of the existence of global strong solution for the compressible Navier–Stokes equations for small initial data such that the rotational part of the velocity [Formula: see text] belongs to [Formula: see text] (in dimension [Formula: see text]). We show then an equivalent of the so-called Fujita–Kato theorem to the case of the compressible Navier–Stokes equations when we consider axisymmetric initial data. The main difficulty is linked to the fact that in this case the velocity is not Lipschitz, as a consequence we have to study carefully the coupling between the rotational and irrotational part of the velocity. In a second part, we address the question of convergence to the incompressible model (for ill-prepared initial data) when the Mach number goes to zero.


Author(s):  
David Maltese ◽  
Antonín Novotný

Abstract We investigate the error between any discrete solution of the implicit marker-and-cell (MAC) numerical scheme for compressible Navier–Stokes equations in the low Mach number regime and an exact strong solution of the incompressible Navier–Stokes equations. The main tool is the relative energy method suggested on the continuous level in Feireisl et al. (2012, Relative entropies, suitable weak solutions, and weak–strong uniqueness for the compressible Navier–Stokes system. J. Math. Fluid Mech., 14, 717–730). Our approach highlights the fact that numerical and mathematical analyses are not two separate fields of mathematics. The result is achieved essentially by exploiting in detail the synergy of analytical and numerical methods. We get an unconditional error estimate in terms of explicitly determined positive powers of the space–time discretization parameters and Mach number in the case of well-prepared initial data and in terms of the boundedness of the error if the initial data are ill prepared. The multiplicative constant in the error estimate depends on a suitable norm of the strong solution but it is independent of the numerical solution itself (and of course, on the discretization parameters and the Mach number). This is the first proof that the MAC scheme is unconditionally and uniformly asymptotically stable in the low Mach number regime.


2020 ◽  
Vol 52 (6) ◽  
pp. 6105-6139
Author(s):  
Paolo Antonelli ◽  
Lars Eric Hientzsch ◽  
Pierangelo Marcati

2015 ◽  
Vol 771 ◽  
pp. 520-546 ◽  
Author(s):  
Nicola De Tullio ◽  
Anatoly I. Ruban

The capabilities of the triple-deck theory of receptivity for subsonic compressible boundary layers have been thoroughly investigated through comparisons with numerical simulations of the compressible Navier–Stokes equations. The analysis focused on the two Tollmien–Schlichting wave linear receptivity problems arising due to the interaction between a low-amplitude acoustic wave and a small isolated roughness element, and the low-amplitude time-periodic vibrations of a ribbon placed on the wall of a flat plate. A parametric study was carried out to look at the effects of roughness element and vibrating ribbon longitudinal dimensions, Reynolds number, Mach number and Tollmien–Schlichting wave frequency. The flat plate is considered isothermal, with a temperature equal to the laminar adiabatic-wall temperature. Numerical simulations of the full and the linearised compressible Navier–Stokes equations have been carried out using high-order finite differences to obtain, respectively, the steady basic flows and the unsteady disturbance fields for the different flow configurations analysed. The results show that the asymptotic theory and the Navier–Stokes simulations are in good agreement. The initial Tollmien–Schlichting wave amplitudes and, in particular, the trends indicated by the theory across the whole parameter space are in excellent agreement with the numerical results. An important finding of the present study is that the behaviour of the theoretical solutions obtained for $\mathit{Re}\rightarrow \infty$ holds at finite Reynolds numbers and the only conditions needed for the theoretical predictions to be accurate are that the receptivity process be linear and the free-stream Mach number be subsonic.


Sign in / Sign up

Export Citation Format

Share Document