low mach number
Recently Published Documents


TOTAL DOCUMENTS

862
(FIVE YEARS 123)

H-INDEX

50
(FIVE YEARS 5)

Author(s):  
Wasilij Barsukow ◽  
Christian Klingenberg

The acoustic equations derived as a linearization of the Euler equations are a valuable system for studies of multi-dimensional solutions. Additionally they possess a low Mach number limit analogous to that of the Euler equations. Aiming at understanding the behaviour of the multi-dimensional Godunov scheme in this limit, first the exact solution of the corresponding Cauchy problem in three spatial dimensions is derived. The appearance of logarithmic singularities in the exact solution of the 4-quadrant Riemann Problem in two dimensions is discussed. The solution formulae are then used to obtain the multidimensional Godunov finite volume scheme in two dimensions. It is shown to be superior to the dimensionally split upwind/Roe scheme concerning its domain of stability and ability to resolve multi-dimensional Riemann problems. It is shown experimentally and theoretically that despite taking into account multi-dimensional information it is, however, not able to resolve the low Mach number limit.


2021 ◽  
Vol 932 ◽  
Author(s):  
Prateek Jaiswal ◽  
Yann Pasco ◽  
Gyuzel Yakhina ◽  
Stéphane Moreau

This paper presents an experimental investigation of aerofoil tones emitted by a controlled-diffusion aerofoil at low Mach number ( $0.05$ ), moderate Reynolds number based on the chord length ( $1.4 \times 10^{5}$ ) and moderate incidence ( $5^{\circ }$ angle of attack). Wall-pressure measurements have been performed along the suction side of the aerofoil to reveal the acoustic source mechanisms. In particular, a feedback loop is found to extend from the aerofoil trailing edge to the regions near the leading edge where the flow encounters a mean favourable pressure gradient, and consists of acoustic disturbances travelling upstream. Simultaneous wall-pressure, velocity and far-field acoustic measurements have been performed to identify the boundary-layer instability responsible for tonal noise generation. Causality correlation between far-field acoustic pressure and wall-normal velocity fluctuations has been performed, which reveals the presence of a Kelvin–Helmholtz-type modal shape within the velocity disturbance field. Tomographic particle image velocimetry measurements have been performed to understand the three-dimensional aspects of this flow instability. These measurements confirm the presence of large two-dimensional rollers that undergo three-dimensional breakdown just upstream of the trailing edge. Finally, modal decomposition of the flow has been carried out using proper orthogonal decomposition, which demonstrates that the normal modes are responsible for aerofoil tonal noise. The higher normal modes are found to undergo regular modulations in the spanwise direction. Based on the observed modal shape, an explanation of aerofoil tonal noise amplitude reduction is given, which has been previously reported in modular or serrated trailing-edge aerofoils.


Sign in / Sign up

Export Citation Format

Share Document