scholarly journals The role of nitric oxide on decreasing the hepatic drug metabolizing enzyme activity by bacterial endotoxin in rats

1999 ◽  
Vol 79 ◽  
pp. 125
Author(s):  
Kiyoyuki Kitaichi ◽  
Li Wang ◽  
Haruna Kidokoro ◽  
Mitsunori Iwase ◽  
Kenji Takagi ◽  
...  
1999 ◽  
Vol 43 (11) ◽  
pp. 2697-2701 ◽  
Author(s):  
Kiyoyuki Kitaichi ◽  
Li Wang ◽  
Kenji Takagi ◽  
Mitsunori Iwase ◽  
Eiji Shibata ◽  
...  

ABSTRACT Klebsiella pneumoniae endotoxin has been found to decrease hepatic P450-mediated drug-metabolizing enzyme activity in a time-dependent manner. In this study, we investigated the role of nitric oxide (NO) in the decrease in hepatic drug-metabolizing enzyme activity caused by endotoxin in vivo. We measured in vivo pharmacokinetic parameters of antipyrine in rats treated with endotoxin and/or a selective inhibitor of inducible NO synthase (iNOS),S-methylisothiourea. Intraperitoneal injection of endotoxin (1 mg/kg of body weight) dramatically decreased the systemic clearance of antipyrine, reflecting reduced hepatic drug-metabolizing enzyme activity, and significantly increased the level of nitrite and nitrate (NOx) in the plasma. S-Methylisothiourea (10 mg/kg) reversed this decreasing antipyrine clearance and reduced the level of NOx in plasma. Repeated injections of an NO donor, (±)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (FK-409; 10 mg/kg), at a dose which maintained plasma NOx at the same levels as those caused by endotoxin injection, also decreased the systemic clearance of antipyrine. These findings suggest that the overproduction of NO observed in this animal model is at least partially responsible for the significant reduction in the hepatic drug-metabolizing enzyme activity that may happen in a gram-negative bacterial infection.


1970 ◽  
Vol 117 (3) ◽  
pp. 491-498 ◽  
Author(s):  
H. H. Miller ◽  
R. K. Johnson ◽  
J. D. Donahue ◽  
W. R. Jondorf

1. Pretreatment of female rats with (−)-emetine or (±)-2,3-dehydroemetine (at 18μmol/kg body wt. for 24h) prolongs the hexobarbital-induced sleeping-time of the treated animals. 2. This effect is not observed on pretreating animals with other compounds closely related to (−)-emetine, such as (−)-isoemetine or (+)-O-methylpsychotrine. 3. Liver microsomal drug-metabolizing enzyme activity in vitro as measured by N-demethylation of aminopyrine and azo-reduction of Neoprontosil is inhibited in rats pretreated with (−)-emetine or with (±)-2,3-dehydroemetine. 4. These inhibitory effects on drug metabolism in vitro are not observed in corresponding experiments involving pretreatment of rats with (−)-isoemetine or (+)-O-methylpsychotrine. 5. Co-administration of emetine or 2,3-dehydroemetine and sodium phenobarbital or 1,1-dichloro-2-o-chlorophenyl-2-p-chlorophenylethane to rats abolishes or greatly diminishes the stimulation of drug-metabolizing enzyme activity in vitro usually obtained by the administration of phenobarbital or 1,1-dichloro-2-o-chlorophenyl-2-p-chlorophenylethane alone. 6. Further, in rats pretreated with sodium phenobarbital and subsequently injected with emetine or 2,3-dehydroemetine the pre-stimulated drug-metabolizing enzyme activity in vitro is diminished. 7. The inhibitory effects on drug-metabolizing enzyme activity after pretreatment with (−)-emetine or (±)-2,3-dehydroemetine do not appear to be related to NADPH generation.


1980 ◽  
Vol 17 (4) ◽  
pp. 267-274 ◽  
Author(s):  
E. A. Sotaniemi ◽  
R. O. Pelkonen ◽  
M. Puukka

Sign in / Sign up

Export Citation Format

Share Document