plasma concentration
Recently Published Documents


TOTAL DOCUMENTS

3385
(FIVE YEARS 507)

H-INDEX

93
(FIVE YEARS 8)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Emine Can ◽  
Jessica A. M. Bastiaansen ◽  
Dominique-Laurent Couturier ◽  
Rolf Gruetter ◽  
Hikari A. I. Yoshihara ◽  
...  

AbstractHyperpolarized [1-13C]pyruvate enables direct in vivo assessment of real-time liver enzymatic activities by 13C magnetic resonance. However, the technique usually requires the injection of a highly supraphysiological dose of pyruvate. We herein demonstrate that liver metabolism can be measured in vivo with hyperpolarized [1-13C]pyruvate administered at two- to three-fold the basal plasma concentration. The flux through pyruvate dehydrogenase, assessed by 13C-labeling of bicarbonate in the fed condition, was found to be saturated or partially inhibited by supraphysiological doses of hyperpolarized [1-13C]pyruvate. The [13C]bicarbonate signal detected in the liver of fasted rats nearly vanished after treatment with a phosphoenolpyruvate carboxykinase (PEPCK) inhibitor, indicating that the signal originates from the flux through PEPCK. In addition, the normalized [13C]bicarbonate signal in fasted untreated animals is dose independent across a 10-fold range, highlighting that PEPCK and pyruvate carboxylase are not saturated and that hepatic gluconeogenesis can be directly probed in vivo with hyperpolarized [1-13C]pyruvate.


BMJ Open ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. e053308
Author(s):  
Madelé van Dyk ◽  
Chelsea Boylan ◽  
Robin Michelet ◽  
Anna M Mc Laughlin ◽  
Ganessan Kichenadasse ◽  
...  

IntroductionChildhood leukaemia is the most common type of cancer in children and represents among 25% of the diagnoses in children <15 years old. Childhood survival rates have significantly improved within the last 40 years due to a rapid advancement in therapeutic interventions. However, in high-risk groups, survival rates remain poor. Pharmacokinetic (PK) data of cancer medications in children are limited and thus current dosing regimens are based on studies with small sample sizes. In adults, large variability in PK is observed and dose individualisation (plasma concentration guided dosing) has been associated with improved clinical outcomes; whether this is true for children is still unknown. This provides an opportunity to explore this strategy in children to potentially reduce toxicities and ensure optimal dosing. This paper will provide a protocol to systematically review studies that have used dose individualisation of drugs used in the treatment of childhood leukaemias.Methods and analysisSystematic review methodology will be applied to identify, select and extract data from published plasma guided dosing studies conducted in a paediatric leukaemia cohort. Databases (eg, Ovid Embase, Ovid MEDLINE, Ovid Cochrane) and clinical trial registries (CENTRAL, ClinicalTrials.gov and ISRCTN) will be used to perform the systematic literature search (up until February 2021). Only full empirical studies will be included, with primary clinical outcomes (progression-free survival, toxicities, minimal residual disease status, complete cytogenetic response, partial cytogenetic response and major molecular response) being used to decide whether the study will be included. The quality of included studies will be undertaken, with a subgroup analysis where appropriate.Ethics and disseminationThis systematic review will not require ethics approval as there will not be collection of primary data. Findings of this review will be made available through publications in peer-reviewed journals and conference presentations. Gaps will be identified in current literature to inform future-related research.PROSPERO registration numberCRD42021225045.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhongxia Tan ◽  
Youxi Zhang ◽  
Chao Wang ◽  
Le Sun

The aim of this study was to develop physiologically based pharmacokinetic (PBPK) models capable of simulating cefadroxil concentrations in plasma and tissues in mouse, rat, and human. PBPK models in this study consisted of 14 tissues and 2 blood compartments. They were established using measured tissue to plasma partition coefficient (Kp) in mouse and rat, absolute expression levels of hPEPT1 along the entire length of the human intestine, and the transporter kinetic parameters. The PBPK models also assumed that all the tissues were well-stirred compartments with perfusion rate limitations, and the ratio of the concentration in tissue to the unbound concentration in plasma is identical across species. These PBPK models were validated strictly by a series of observed plasma concentration–time profile data. The average fold error (AFE) and absolute average fold error (AAFE) values were all less than 2. The models’ rationality and accuracy were further demonstrated by the almost consistent Vss calculated by the PBPK model and noncompartmental method, as well as the good allometric scaling relationship of Vss and CL. The model suggests that hPEPT1 is the major transporter responsible for the oral absorption of cefadroxil in human, and the plasma concentration–time profiles of cefadroxil were not sensitive to dissolution rate faster than T85% = 2 h. The cefadroxil PBPK model in human is reliable and can be used to predict concentration–time profile at infected tissue. It may be useful for dose selection and informative decision-making during clinical trials and dosage form design of cefadroxil and provide a reference for the PBPK model establishment of hPEPT1 substrate.


Toxins ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 7
Author(s):  
Paul Gerard Bruinenberg ◽  
Mathieu Castex

Mycotoxicoses in animals are caused by exposure to mycotoxin-contaminated feeds. Disease risk is managed using dietary adsorbing agents which reduce oral bioavailability. The objective of this work was to evaluate the efficacy of three selected yeast products as mycotoxin binders using in vitro and in vivo models. Their capacity to adsorb deoxynivalenol (DON), zearalenone (ZEA), and ochratoxin A (OTA) was evaluated using an in vitro model designed to simulate the pH conditions during gastric passage in a monogastric animal. Results showed that only one product, an enzymatic yeast hydrolysate (YHY) of a novel strain Saccharomyces cerevisiae, adsorbed about 45% of DON in solution. Next, we determined the effect of YHY on oral absorption of a DON, ZEA, and OTA mixture using a toxicokinetic model in swine. Toxicokinetic modeling of the plasma concentration-time profiles of DON, OTA, and zearalenone-glucuronide (ZEA-GlcA) showed that YHY tended to reduce the maximal plasma concentration of OTA by 17%. YHY did not reduce oral bioavailability of OTA, DON, and ZEA-GlcA. Within the context of this experiment, and despite some positive indications from both the in vitro and in vivo models employed, we conclude that the YHY prototype was not an effective agent for multiple mycotoxin adsorption.


2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Jongsung Hahn ◽  
Kyoung Lok Min ◽  
Soyoung Kang ◽  
Seungwon Yang ◽  
Min Soo Park ◽  
...  

To the best of our knowledge, this is the first large prospective pharmacokinetic/pharmacodynamic (PK/PD) study of piperacillin-tazobactam in ECMO patients. We used piperacillin-tazobactam plasma concentration data from four different cases (concomitant use of ECMO and CVVHDF, receiving ECMO only, weaned from ECMO and receiving CVVHDF, and weaned from ECMO and not receiving CVVHDF) to provide preliminary insights into the incremental effects of critical illness, ECMO, and CVVHDF on PK.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yusuke Kamiya ◽  
Tomonori Miura ◽  
Airi Kato ◽  
Norie Murayama ◽  
Makiko Shimizu ◽  
...  

Aim: The main aim of the current study was to obtain forward dosimetry assessments of pyrrolizidine alkaloid senkirkine plasma and liver concentrations by setting up a human physiologically based pharmacokinetic (PBPK) model based on the limited information available. Background: The risks associated with plant-derived pyrrolizidine alkaloids as natural toxins have been assessed. Objective: The pyrrolizidine alkaloid senkirkine was investigated because it was analyzed in a European transcriptomics study of natural hepatotoxins and in a study of the alkaloidal constituents of traditional Japanese food plants Petasites japonicus. The in silico human plasma and liver concentrations of senkirkine were modeled using doses reported for acute-term toxicity in humans. Methods: Using a simplified PBPK model established using rat pharmacokinetic data, forward dosimetry was conducted. Since in vitro rat and human intrinsic hepatic clearances were similar; an allometric scaling approach was applied to rat parameters to create a human PBPK model. Results: After oral administration of 1.0 mg/kg in rats in vivo, water-soluble senkirkine was absorbed and cleared from plasma to two orders of magnitude below the maximum concentration in 8 h. Human in silico senkirkine plasma concentration curves were generated after virtual daily oral administrations of 3.0 mg/kg senkirkine (the dose involved in an acute fatal hepatotoxicity case). A high concentration of senkirkine in the culture medium caused in vitro hepatotoxicity as evidenced by lactate dehydrogenase leakage from human hepatocyte-like HepaRG cells. Conclusion: Higher virtual concentrations of senkirkine in human liver and plasma than those in rat plasma were estimated using the current rat and human PBPK models. Current simulations suggest that if P. japonicus (a water-soluble pyrrolizidine alkaloid-producing plant) is ingested daily as food, hepatotoxic senkirkine could be continuously present in human plasma and liver.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3609
Author(s):  
Jessica Leung ◽  
Thierry Beths ◽  
Jennifer E. Carter ◽  
Richard Munn ◽  
Ted Whittem ◽  
...  

(1) Objective: To investigate the analgesic effects of intravenous acetaminophen after intravenous administration in dogs presenting for ovariohysterectomy. (2) Methods: 14 ASA I client-owned female entire dogs. In this randomized, blinded, clinical study, dogs were given meperidine and acepromazine intramuscularly before induction of anesthesia with intravenous propofol. Anesthesia was maintained with isoflurane in oxygen. Intravenous acetaminophen 20 mg/kg or 0.9% NaCl was administered postoperatively. Pain assessments were conducted using the Glasgow Pain Scale short form before premedication and at 10, 20, 60, 120, and 180 min post-extubation or until rescue analgesia was given. The pain scores, times, and incidences of rescue analgesia between the groups was compared. Blood was collected before and 2, 5, 10, 20, 40, and 80 min after acetaminophen administration. Acetaminophen plasma concentration was quantified by liquid chromatography-mass spectrometry. The acetaminophen plasma concentration at the time of each pain score evaluation was subsequently calculated. (3) Results: There was no significant difference in pain scores at 10 min, highest pain scores, or time of rescue analgesia between groups. In each group, 3 dogs (43%) received rescue analgesia within 20 min. (4) Conclusions: Following ovariohysterectomy in dogs, there was no detectable analgesic effect of a 20 mg/kg dosage of intravenous acetaminophen administered at the end of surgery.


2021 ◽  
Vol 11 (4) ◽  
pp. 4272-4279

The study of this review focus on effective herbal medicine against COVID-19. There have been many such plants on which a lot of research has been done earlier, and these have been very good for health as we know that the current situation of the whole world is very serious with the novel COVID-19 virus epidemic. Hence, people consume a lot of herbal medicine to increase their immunity, such as kadha (brewing), and it is also very effective against this viral infection. If we take brewing in the proper dose, research should be done from clinical trials. We have been taking many medicines since old times and have been doing research on them which is Antiviral and useful in different types of infection caused by bacteria, viruses, microbes, etc. The plant's diversity included their chemical constituents, showing the promise of their therapeutic level against the antiviral activity, without any toxicity with plasma concentration. Many plants show effectively against viral infections that are Flavonoids, Glycosides, polyphenols, alkaloids, etc.. Still, any clinical trials on humans do not prove their proper research on them, but the Chinese system of medicine claimed that Traditional Chinese medicine improves the COVID-19 patient. According to this review, we aim to collate data of plants the various large in the quantity of natural active constituents from individual medicinal plant species that may have potential therapeutic efficacy. The continuing development of novel antiviral drugs needs to isolate and synthesize more new active constituents.


Sign in / Sign up

Export Citation Format

Share Document