scholarly journals Effect of muscarinic antagonists on adrenal catecholamine release in response to splanchnic nerve stimulation in anethetized dogs

1990 ◽  
Vol 52 ◽  
pp. 208
Author(s):  
Toshitake Shimamura ◽  
Tomohiko Kimura ◽  
Susumu Satoh
1999 ◽  
Vol 276 (4) ◽  
pp. R1118-R1124
Author(s):  
Kimiya Masada ◽  
Takahiro Nagayama ◽  
Akio Hosokawa ◽  
Makoto Yoshida ◽  
Mizue Suzuki-Kusaba ◽  
...  

We examined the effects of proadrenomedullin-derived peptides on the release of adrenal catecholamines in response to cholinergic stimuli in pentobarbital sodium-anesthetized dogs. Drugs were administered into the adrenal gland through the phrenicoabdominal artery. Splanchnic nerve stimulation (1, 2, and 3 Hz) and ACh injection (0.75, 1.5, and 3 μg) produced frequency- or dose-dependent increases in adrenal catecholamine output. These responses were unaffected by infusion of adrenomedullin (1, 3, and 10 ng ⋅ kg−1 ⋅ min−1) or its selective antagonist adrenomedullin-(22—52) (5, 15, and 50 ng ⋅ kg−1 ⋅ min−1). Proadrenomedullin NH2-terminal 20 peptide (PAMP; 5, 15, and 50 ng ⋅ kg−1 ⋅ min−1) suppressed both the splanchnic nerve stimulation- and ACh-induced increases in catecholamine output in a dose-dependent manner. PAMP also suppressed the catecholamine release responses to the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (0.5, 1, and 2 μg) and to muscarine (0.5, 1, and 2 μg), although the muscarine-induced response was relatively resistant to PAMP. These results suggest that PAMP, but not adrenomedullin, can act as an inhibitory regulator of adrenal catecholamine release in vivo.


Sign in / Sign up

Export Citation Format

Share Document