induced response
Recently Published Documents


TOTAL DOCUMENTS

1039
(FIVE YEARS 193)

H-INDEX

53
(FIVE YEARS 7)

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Zannatul Ferdous ◽  
Sumaya Beegam ◽  
Nur E. Zaaba ◽  
Ozaz Elzaki ◽  
Saeed Tariq ◽  
...  

With advent of nanotechnology, silver nanoparticles, AgNPs owing majorly to their antibacterial properties, are used widely in food industry and biomedical applications implying human exposure by various routes including inhalation. Several reports have suggested AgNPs induced pathophysiological effects in a cardiovascular system. However, cardiovascular diseases such as hypertension may interfere with AgNPs-induced response, yet majority of them are understudied. The aim of this work was to evaluate the thrombotic complications in response to polyethylene glycol- (PEG-) coated AgNPs using an experimental hypertensive (HT) mouse model. Saline (control) or PEG-AgNPs (0.5 mg/kg) were intratracheally (i.t.) instilled four times, i.e., on days 7, 14, 21, and 28 post-angiotensin II-induced HT, or vehicle (saline) infusion. On day 29, various parameters were assessed including thrombosis in pial arterioles and venules, platelet aggregation in whole blood in vitro, plasma markers of coagulation, and fibrinolysis and systemic oxidative stress. Pulmonary exposure to PEG-AgNPs in HT mice induced an aggravation of in vivo thrombosis in pial arterioles and venules compared to normotensive (NT) mice exposed to PEG-AgNPs or HT mice given saline. The prothrombin time, activated partial thromboplastin time, and platelet aggregation in vitro were exacerbated after exposure to PEG-AgNPs in HT mice compared with either NT mice exposed to nanoparticles or HT mice exposed to saline. Elevated concentrations of fibrinogen, plasminogen activator inhibitor-1, and von Willebrand factor were seen after the exposure to PEG-AgNPs in HT mice compared with either PEG-AgNPs exposed NT mice or HT mice given with saline. Likewise, the plasma levels of superoxide dismutase and nitric oxide were augmented by PEG-AgNPs in HT mice compared with either NT mice exposed to nanoparticles or HT mice exposed to saline. Collectively, these results demonstrate that PEG-AgNPs can potentially exacerbate the in vivo and in vitro procoagulatory and oxidative stress effect in HT mice and suggest that population with hypertension are at higher risk of the toxicity of PEG-AgNPs.


2022 ◽  
Vol 8 ◽  
Author(s):  
Ryota Nakajima ◽  
Toru Miyama ◽  
Tomo Kitahashi ◽  
Noriyuki Isobe ◽  
Yuriko Nagano ◽  
...  

Extreme storms, such as tropical cyclones, are responsible for a significant portion of the plastic debris transported from land to sea yet little is known about the storm response of microplastics and other debris in offshore and open waters. To investigate this, we conducted floating plastic surveys in the center of Sagami Bay, Japan approximately 30 km from the coastline, before and after the passage of a typhoon. The concentrations (number of particles/km2) of micro- and mesoplastics were two orders of magnitude higher 1-day after the typhoon than the values recorded pre-typhoon and the mass (g/km2) of plastic particles (sum of micro- and mesoplastics) increased 1,300 times immediately after the storm. However, the remarkably high abundance of micro- and mesoplastics found at 1-day after the typhoon returned to the pre-typhoon levels in just 2 days. Model simulations also suggested that during an extreme storm a significant amount of micro- and mesoplastics can be rapidly swept away from coastal to open waters over a short period of time. To better estimate the annual load of plastics from land to sea it is important to consider the increase in leakages of plastic debris into the ocean associated with extreme storm events.


2022 ◽  
Author(s):  
Fawen Dai ◽  
Yanting Liu ◽  
Meimei Zhang ◽  
Lin Tao ◽  
Chu Huashuo ◽  
...  

Abstract The administration of interferon has improved the antiviral and immunomodulatory abilities of piglets, which is conductive to conductive to the prevention of potential diseases or delay the appearance of clinical symptoms. This study aimed to evaluate the effects from administration of recombinant interferon-alpha (IFN-α) on the daily care of piglets. The results were compared with compound Chinese herbal, which was proved to improve serum interferon level. Further, the administration routes were compared between oral administration and intramuscular injection. Forty (40) piglets with equal age and weight were randomly divided into four groups: Control group (Group C, without treatment), Group H (treated with compound Chinese herbal), Group K (administered orally with recombinant IFN-α, 1500 IU per day per piglet), and Group J (administered intramuscularly with IFN-α, 4× 106 IU per day per piglet). After the treatment of 15 days, both oral and intramuscular treatment of recombinant IFN-α significantly improved the secretion of IFN-gamma (IFN-γ) (P<0.05), and the effects of intramuscular pathway were faster. In addition, the expression levels of IFN-stimulated genes (MX1 and ISG15) were significantly enhanced (P<0.01), independently of IFN-α treatment time and serum IFN-γ level. Different from other studies, compound Chinese herbal showed weaker effects on interferon stimulation in piglets. The results indicated that oral administration of recombinant IFN-α improved interferon-induced response of piglets at both serum and molecular levels, which may be applied for improving autoimmunity of piglets.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 493
Author(s):  
Jiaxing Hu ◽  
Zhengnong Li ◽  
Zhefei Zhao

The field measurement of wind-induced response is of great significance to the wind resistance design of high-rise buildings, in particular torsional responses measured from high-rise buildings under typhoons. The measured high-rise building, with a height of 108 m, has 32 stories and is supported by giant trusses with four massive columns. Acceleration responses along translational and torsional directions were monitored synchronously and continuously during the passage of Typhoon Sarika on 18 October 2016. The wind speed and wind direction at the height of 115 m, the translational accelerations on a total of six floors and the angular accelerations on a total of four floors were recorded. The time and frequency domain characteristics of translational acceleration and torsional angular accelerations were analyzed. The amplitude-dependent translational and torsional modal frequencies of the measured building were identified by NExT-ERA, SSI, and RDT methods. The full-scale study is expected to provide useful information on the wind-resistant design of high-rise buildings in typhoon-prone regions.


2022 ◽  
Vol 23 (2) ◽  
pp. 609
Author(s):  
Chien-Chung Yang ◽  
Li-Der Hsiao ◽  
Ya-Fang Shih ◽  
Zih-Yao Yu ◽  
Chuen-Mao Yang

Bradykinin (BK) has been shown to induce matrix metalloproteinase (MMP)-9 expression and participate in neuroinflammation. The BK/MMP-9 axis can be a target for managing neuroinflammation. Our previous reports have indicated that reactive oxygen species (ROS)-mediated nuclear factor-kappaB (NF-κB) activity is involved in BK-induced MMP-9 expression in rat brain astrocytes (RBA-1). Rhamnetin (RNT), a flavonoid compound, possesses antioxidant and anti-inflammatory effects. Thus, we proposed RNT could attenuate BK-induced response in RBA-1. This study aims to approach mechanisms underlying RNT regulating BK-stimulated MMP-9 expression, especially ROS and NF-κB. We used pharmacological inhibitors and siRNAs to dissect molecular mechanisms. Western blotting and gelatin zymography were used to evaluate protein and MMP-9 expression. Real-time PCR was used for gene expression. Wound healing assay was applied for cell migration. 2ʹ,7ʹ-dichlorodihydrofluorescein diacetate (H2DCF-DA) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) were used for ROS generation and NOX activity, respectively. Promoter luciferase assay and chromatin immunoprecipitation (ChIP) assay were applied to detect gene transcription. Our results showed that RNT inhibits BK-induced MMP-9 protein and mRNA expression, promoter activity, and cell migration in RBA-1 cells. Besides, the levels of phospho-PKCδ, NOX activity, ROS, phospho-ERK1/2, phospho-p65, and NF-κB p65 binding to MMP-9 promoter were attenuated by RNT. In summary, RNT attenuates BK-enhanced MMP-9 upregulation through inhibiting PKCδ/NOX/ROS/ERK1/2-dependent NF-κB activity in RBA-1.


Author(s):  
Leo Licari ◽  
Simona Viola ◽  
Giuseppe Salamone

AbstractVentral hernia (VH) frequently affects patients after abdominal surgery. The use of a mesh is often recommended. Different materials are described, from synthetic non-resorbable meshes to biological meshes. New generation meshes, also named scaffolds, aim to combine the advantages of both materials. The aim of this review is to provide an overview of the cytological, histological, biomechanical, and clinical outcomes of the use of the newest resorbable synthetic scaffolds in VH repair, based on experimental studies in a pre-clinical setting. A systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and to the Assessing the Methodological Quality of Systematic Reviews (AMSTAR) guidelines. Only experimental studies were included. Outcome parameters were building technique, in vitro cytocompatibility, in vivo histocompatibility, biomechanical analysis, and clinical outcomes. The articles included were nine. The total number of cases treated was 257. Materials analyzed included electrospun silk fibroin (SF)/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) hybrid scaffolds, biodegradable polyester poly-ε-caprolactone (PCL) in the form of nanofibers, biodegradable mesh in poly-4-hydroxybutyrate (P4HB), nanofibrous polylactic acid (PLA) scaffold with a polypropylene (PP) material to generate a sandwich-like mesh, the collagen sponge (CS) group, the hybrid scaffold (HS) containing CS and poly-L-lactide (PLLA), and the hybrid scaffold (HS) + bone marrow (HSBM). Resorbable synthetic scaffolds are new, safe, surgical materials for the treatment or prevention of ventral hernia in animal models. Scaffolds should be tested in a contaminated surgical field for emergency use. Rigorous schematic indications for data collection are needed to improve the quality of the data in order to definitively clarify the pathway involved in inflammatory induced response.


2022 ◽  
Author(s):  
Hanna N. Wetzel ◽  
Vladimir L. Tsibulsky ◽  
Andrew B. Norman

Abstract According to pharmacological theory, the magnitude of an agonist-induced response is related to the number of receptors occupied. If there is a receptor reserve, when the number of receptors is altered the fractional occupancy required to maintain this set number of receptors will change. Therefore, any change in dopamine receptor number will result in a change in the concentration of cocaine required to induce the satiety response. Rats that self-administered cocaine were treated with the irreversible monoamine receptor antagonist, EEDQ, or were infused continuously for 14 days with the D1-like antagonist, SCH23390, treatments known to decrease or increase, respectively, the number of dopamine receptors with a concomitant decrease or increase in response to dopaminergic agonists. The rate of maintained cocaine self-administration increased or decreased in rats treated with EEDQ or withdrawn from chronic SCH23390 infusion, respectively. After EEDQ treatment, the effect ratio of a single dose of SCH23390 or eticlopride were unchanged, indicating that the same dopamine receptor populations mediated the accelerated cocaine self-administration. The satiety threshold likely corresponds to a specific number of activated dopamine receptors. Changing the receptor reserve is a key determinant of the rate of cocaine self-administration because the resulting increased or decreased concentration of cocaine results in an accelerated or decelerated rate of cocaine elimination as dictated by first-order kinetics. Changes in dopamine receptor number that may occur after continuous treatment with antagonists may account for the apparent lack of efficacy of these antagonists in clinical trials for cocaine use disorder.


iScience ◽  
2022 ◽  
pp. 103759
Author(s):  
Matthew P. Hirakawa ◽  
Nikki Tjahjono ◽  
Yooli K. Light ◽  
Aleyna N. Celebi ◽  
Nisa N. Celebi ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 223
Author(s):  
Md Mahfuzur Rahman ◽  
Gianluca Ranzi

Composite steel–concrete slab is a floor typology widely used for building applications. Their design is usually governed by serviceability limit state requirements associated with the time-dependent response of the concrete. In this context, this paper presents a state-of-the-art review of research carried out to date on the long-term behavior of composite steel–concrete slabs. The particularity of this time-dependent response relies on the fact that the concrete cannot dry from the underside of the slab due to the presence of the profiled sheeting while it can dry from its upper surface. In the first part of the paper, a review of the work carried out on the identification of the time-dependent response of the concrete is presented by considering the peculiarities that occur due to the non-symmetric drying condition related to composite slabs. Particular attention is given to shrinkage effects and to the occurrence and influence of the non-uniform shrinkage gradient that develops in this form of construction over time. This is followed by the description and discussion of the experimental work performed on both simply-supported and continuous static configurations of composite slabs. In particular, the work published to date is summarized while highlighting the key parameters of the test samples and of the testing protocols adopted in the experiments. In the last part of the paper, available theoretical and design models proposed for the predictions of the shrinkage-induced behavior of composite slabs are presented and discussed.


2021 ◽  
Author(s):  
Xinlei Ma ◽  
Ningwei XU ◽  
Pengpeng Gu ◽  
Liqiang Du ◽  
Zhenqing Guo ◽  
...  

Abstract MADS-box gene family is a key regulatory factor family, which controls vegetative growth, reproductive development and can be used to mediate abiotic stresses in many plants. However, Knowledge of this gene family is still limited in Setaria italica. In the present study, a total of 70 SitMADS genes were identified and renamed on the basis of the chromosomal distribution of the SitMADS genes. According to gene structure, conserved motif and phylogenetic feature, the 70 SitMADSs were classified into type-Ⅰ (Mα, Mβ, Mγ) and type-Ⅱ (MIKCC and MIKC*). All of the SitMADS genes were randomly distributed on nine chromosomes, and five tandem duplicated genes and 12 pairs of duplicated gene segments were detected in the SitMADS genes family. Synteny analysis provided a high homology between SitMADS genes and OsMADS genes. A cis-element analysis inferred that SitMADS genes, except for SitMADS23, possessed at least one drought stress response and ABA(Abscisic Acid)-induced response cis-element. Real-time quantitative PCR analysis was used to detect the expression patterns of SitMADS genes in various tissues and demonstrated that the genes responded drought stress and ABA treatments. SitMADS23, SitMADS42, SitMADS51, SitMADS52, SitMADS58 and SitMADS64 were highly expressed in PEG(Polyethylene glycol) and drought stress, which suggested its important role in drought stress response. SitMADS51, SitMADS63 and SitMADS64 seemed to be responsive to ABA hormone signaling, suggesting that they were involved in the ABA signaling pathways. This paper provided a deep insight into the evolutionary characteristics of SitMADS genes. The results provide comprehensive information for further analyses of the molecular functions of the MADS-box gene family in Setaria italica.


Sign in / Sign up

Export Citation Format

Share Document