scholarly journals Steady state kinetics of energy-dependent Ca2+ uptake in rat liver mitochondria.

1977 ◽  
Vol 252 (13) ◽  
pp. 4539-4545
Author(s):  
S M Hutson
1972 ◽  
Vol 127 (2) ◽  
pp. 321-333 ◽  
Author(s):  
Peter J. F. Henderson

When an enzyme exhibits a high affinity for an inhibitor, the steady-state analysis of the mechanism is complicated by the non-linearity of normal dose–response plots or of reciprocal replots. It is shown here that dose–response measurements generate a linear plot of inhibitor concentration divided by degree of inhibition against velocity without inhibitor divided by velocity with inhibitor; the concentration of enzyme may be derived from the extrapolated intercept of such plots, and the mechanism of inhibition from replots of the variation of the slope with substrate concentration. The limiting cases where virtually all inhibitor molecules are bound or virtually all are free are described, together with the situation when a significant proportion of the substrate becomes bound. This type of analysis indicates that the inhibitors of oxidative phosphorylation, rutamycin and bongkrekic acid, are tightly bound to rat liver mitochondria.


1965 ◽  
Vol 240 (6) ◽  
pp. 2712-2720
Author(s):  
Zdenek Drahota ◽  
Ernesto Carafoli ◽  
Carlo S. Rossi ◽  
Robert L. Gamble ◽  
Albert L. Lehninger

1990 ◽  
Vol 1018 (1) ◽  
pp. 77-90 ◽  
Author(s):  
Siro Luvisetto ◽  
Carmen Cola ◽  
Thomas E. Conover ◽  
Giovanni Felice Azzone

2000 ◽  
Vol 203 (1) ◽  
pp. 41-49 ◽  
Author(s):  
A.D. Vinogradov

H(+)-ATP synthase (F(1)F(o) ATPase) catalyzes the synthesis and/or hydrolysis of ATP, and the reactions are strongly affected by all the substrates (products) in a way clearly distinct from that expected of a simple reversibly operating enzyme. Recent studies have revealed the structure of F(1), which is ideally suited for the alternating binding change mechanism, with a rotating gamma-subunit as the energy-driven coupling device. According to this mechanism ATP, ADP, inorganic phosphate (P(i)) and Mg(2+) participate in the forward and reverse overall reactions exclusively as the substrates and products. However, both F(1) and F(1)F(o) demonstrate non-trivial steady-state and pre-steady-state kinetics as a function of variable substrate (product) concentrations. Several effectors cause unidirectional inhibition or activation of the enzyme. When considered separately, the unidirectional effects of ADP, P(i), Mg(2+) and energy supply on ATP synthesis or hydrolysis may possibly be explained by very complex kinetic schemes; taken together, the results suggest that different conformational states of the enzyme operate in the ATP hydrolase and ATP synthase reactions. A possible mechanism for an energy-dependent switch between the two states of F(1)F(o) ATPase is proposed.


Sign in / Sign up

Export Citation Format

Share Document