atp synthesis
Recently Published Documents


TOTAL DOCUMENTS

1808
(FIVE YEARS 384)

H-INDEX

95
(FIVE YEARS 13)

2022 ◽  
Vol 165 ◽  
pp. 9-18
Author(s):  
Sonia Cortassa ◽  
Miguel A. Aon ◽  
Magdalena Juhaszova ◽  
Evgeny Kobrinsky ◽  
Dmitry B. Zorov ◽  
...  

2022 ◽  
Vol 18 ◽  
Author(s):  
Vivian Cordeiro Rodrigues ◽  
William Queiroz Felippe ◽  
Carla Marins Goulart ◽  
Aurea Echevarria ◽  
Ana Paula Pereira da Silva

Background: Chalcones are open-chain flavonoids especially attractive to medicinal chemistry due to their easy synthesis and the possibility of structural modifications. Objective: Evaluate the in vitro anticancer activity of a series of hybrids chalcones-thiosemicarbazones against the human hepatocellular carcinoma cell line, HepG2. Methods: Seven hybrid chalcones-thiosemicarbazones (CTs), 3-(4’-X-phenyl)-1-phenylprop-2-en-1-one thiosemicarbazone, where X=H (CT-H), CH3 (CT-CH3), NO2 (CT-NO2), Cl (CT-Cl), CN (CT-CN), F (CT-F) and Br (CT-Br), were synthesized and their effects on cells viability and mitochondrial oxygen consumption were accessed. Results: Incubation with CTs caused a decrease in HepG2 cells viability in a time-concentration-dependent manner. The most effective compounds in inhibiting cell viability, after 24 hours of treatment, were CT-Cl and CT-CH3 (IC50 20.9 and 23.63 μM, respectively). In addition, using 10 M and only 1 hour of pre-incubation, CT-CH3 caused a reduction in basal respiration (-37%), oxygen consumption coupled with ATP synthesis (-60%) and maximum oxygen consumption (-54%). These alterations in respiratory parameters may be involved with the inhibitory effects of CT-CH3, since significant changes in oxygen consumption rates were observed in a condition that anticipates more significant losses of cell viability. The ADME parameters and the no violation of Lipinski Rule of Five showed that all compounds are safe. Conclusion: These results may contribute to the knowledge about the effects of CTs on these cells and the development of new treatments against HCCs.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Tatsuya Sato ◽  
Nobutoshi Ichise ◽  
Takeshi Kobayashi ◽  
Hiroyori Fusagawa ◽  
Hiroya Yamazaki ◽  
...  

AbstractThe initiation of heartbeat is an essential step in cardiogenesis in the heart primordium, but it remains unclear how intracellular metabolism responds to increased energy demands after heartbeat initiation. In this study, embryos in Wistar rats at embryonic day 10, at which heartbeat begins in rats, were divided into two groups by the heart primordium before and after heartbeat initiation and their metabolic characteristics were assessed. Metabolome analysis revealed that increased levels of ATP, a main product of glucose catabolism, and reduced glutathione, a by-product of the pentose phosphate pathway, were the major determinants in the heart primordium after heartbeat initiation. Glycolytic capacity and ATP synthesis-linked mitochondrial respiration were significantly increased, but subunits in complexes of mitochondrial oxidative phosphorylation were not upregulated in the heart primordium after heartbeat initiation. Hypoxia-inducible factor (HIF)-1α was activated and a glucose transporter and rate-limiting enzymes of the glycolytic and pentose phosphate pathways, which are HIF-1α-downstream targets, were upregulated in the heart primordium after heartbeat initiation. These results suggest that the HIF-1α-mediated enhancement of glycolysis with activation of the pentose phosphate pathway, potentially leading to antioxidant defense and nucleotide biosynthesis, covers the increased energy demand in the beating and developing heart primordium.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Seiga Yanagisawa ◽  
Wayne D Frasch

Most cellular ATP is made by rotary F1FO ATP synthases using proton translocation-generated clockwise torque on the FO c-ring rotor, while F1-ATP hydrolysis can force counterclockwise rotation and proton pumping. The FO torque-generating mechanism remains elusive even though the FO interface of stator subunit-a, which contains the transmembrane proton half-channels, and the c-ring is known from recent F1FO structures. Here, single-molecule F1FO rotation studies determined that the pKa values of the half-channels differ, show that mutations of residues in these channels change the pKa values of both half-channels, and reveal the ability of FO to undergo single c-subunit rotational stepping. These experiments provide evidence to support the hypothesis that proton translocation through FO operates via a Grotthuss mechanism involving a column of single water molecules in each half-channel linked by proton translocation-dependent c-ring rotation. We also observed pH-dependent 11° ATP synthase-direction sub-steps of the E. coli c10-ring of F1FO against the torque of F1-ATPase-dependent rotation that result from H+ transfer events from FO subunit-a groups with a low pKa to one c-subunit in the c-ring, and from an adjacent c-subunit to stator groups with a high pKa. These results support a mechanism in which alternating proton translocation-dependent 11° and 25° synthase-direction rotational sub-steps of the c10-ring occur to sustain F1FO ATP synthesis.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 131
Author(s):  
Xiao Zhang ◽  
Namrata Tomar ◽  
Sunil M. Kandel ◽  
Said H. Audi ◽  
Allen W. Cowley ◽  
...  

Mitochondrial dehydrogenases are differentially stimulated by Ca2+. Ca2+ has also diverse regulatory effects on mitochondrial transporters and other enzymes. However, the consequences of these regulatory effects on mitochondrial oxidative phosphorylation (OxPhos) and ATP production, and the dependencies of these consequences on respiratory substrates, have not been investigated between the kidney and heart despite the fact that kidney energy requirements are second only to those of the heart. Our objective was, therefore, to elucidate these relationships in isolated mitochondria from the kidney outer medulla (OM) and heart. ADP-induced mitochondrial respiration was measured at different CaCl2 concentrations in the presence of various respiratory substrates, including pyruvate + malate (PM), glutamate + malate (GM), alpha-ketoglutarate + malate (AM), palmitoyl-carnitine + malate (PCM), and succinate + rotenone (SUC + ROT). The results showed that, in both heart and OM mitochondria, and for most complex I substrates, Ca2+ effects are biphasic: small increases in Ca2+ concentration stimulated, while large increases inhibited mitochondrial respiration. Furthermore, significant differences in substrate- and Ca2+-dependent O2 utilization towards ATP production between heart and OM mitochondria were observed. With PM and PCM substrates, Ca2+ showed more prominent stimulatory effects in OM than in heart mitochondria, while with GM and AM substrates, Ca2+ had similar biphasic regulatory effects in both OM and heart mitochondria. In contrast, with complex II substrate SUC + ROT, only inhibitory effects on mitochondrial respiration was observed in both the heart and the OM. We conclude that the regulatory effects of Ca2+ on mitochondrial OxPhos and ATP synthesis are biphasic, substrate-dependent, and tissue-specific.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hamza Shahid ◽  
Teng Cai ◽  
Yuyang Wang ◽  
Caiqing Zheng ◽  
Yuting Yang ◽  
...  

Duclauxin is a heptacyclic oligophenalenone dimer consisting of an isocoumarin and a dihydroisocoumarin unit. These two tricyclic moieties are joined by a cyclopentane ring to form a unique hinge or castanets-like structure. Duclauxin is effective against numerous tumor cell lines because it prevents adenosine triphosphate (ATP) synthesis by inhibiting mitochondrial respiration. There are about 36 reported natural duclauxin analogs mainly produced by 9 Penicillium and Talaromyces species (T. duclauxii, T. aculeatus, T. stipitatus, T. bacillisporus, T. verruculosus, T. macrosporus, P. herquei, P. manginii, and Talaromyces sp.). These metabolites exhibit remarkable biological activities, including antitumor, enzyme inhibition, and antimicrobial, showing tremendous potential in agricultural and medical applications. This review highlights the chemical structures and biological activities of fungal duclauxins, together with biosynthesis, absolute configuration, and mode of action for important duclauxins. Furthermore, phylogenetic analysis and correct names of Penicillium and Talaromyces species producing duclauxins are presented in this review.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yaru Xu ◽  
Ge Gao ◽  
Xiaoru Sun ◽  
Qidong Liu ◽  
Cheng Li

Postoperative delirium (POD) is one of the most important complications after surgery with general anesthesia, for which the neurotoxicity of general anesthetics is a high-risk factor. However, the mechanism remains largely unknown, which also hinders the effective treatment of POD. Here, we confirmed that a clinical concentration of the general anesthetic sevoflurane increased the expression of inflammatory factors and activated the caspase-3 by upregulating ATPase inhibitory factor 1 (ATPIF1) expression in microglia. Upregulation of ATPIF1 decreased the synthesis of ATP which is an important signaling molecule secreted by microglia. Extracellular supplementation with ATP attenuated the microglial inflammatory response and caspase-3 activation caused by sevoflurane or overexpression of ATPIF1. Additionally, the microglial inflammatory response further upregulated ATPIF1 expression, resulting in a positive feedback loop. Animal experiments further indicated that intraperitoneal injection of ATP significantly alleviated sevoflurane anesthesia-induced POD-related anxiety behavior and memory damage in mice. This study reveals that ATPIF1, an important protein regulating ATP synthesis, mediates sevoflurane-induced neurotoxicity in microglia. ATP supplementation may be a potential clinical treatment to alleviate sevoflurane-induced POD.


Function ◽  
2021 ◽  
Author(s):  
Magdalena Juhaszova ◽  
Evgeny Kobrinsky ◽  
Dmitry B Zorov ◽  
H Bradley Nuss ◽  
Yael Yaniv ◽  
...  

Abstract ATP synthase (F1Fo) synthesizes daily our body's weight in ATP, whose production-rate can be transiently increased several-fold to meet changes in energy utilization. Using purified mammalian F1Fo-reconstituted proteoliposomes and isolated mitochondria, we show F1Fo can utilize both ΔΨm-driven H+- and K+-transport to synthesize ATP under physiological pH = 7.2 and K+ = 140 mEq/L conditions. Purely K+-driven ATP synthesis from single F1Fo molecules measured by bioluminescence photon detection could be directly demonstrated along with simultaneous measurements of unitary K+ currents by voltage clamp, both blocked by specific Fo inhibitors. In the presence of K+, compared to osmotically-matched conditions in which this cation is absent, isolated mitochondria display 3.5-fold higher rates of ATP synthesis, at the expense of 2.6-fold higher rates of oxygen consumption, these fluxes being driven by a 2.7:1 K+:H+ stoichiometry. The excellent agreement between the functional data obtained from purified F1Fo single molecule experiments and ATP synthase studied in the intact mitochondrion under unaltered OxPhos coupling by K+ presence, is entirely consistent with K+ transport through the ATP synthase driving the observed increase in ATP synthesis. Thus, both K+ (harnessing ΔΨm) and H+ (harnessing its chemical potential energy, ΔµH) drive ATP generation during normal physiology.


Author(s):  
Francisco F. De-Miguel

The soma, dendrites and axon of neurons may display calcium-dependent release of transmitters and peptides. Such release is named extrasynaptic for occurring in the absence of synaptic structures. This review describes cooperative actions of three calcium sources on somatic exocytosis. Emphasis is given to the release of serotonin by the classical serotonergic leech Retzius neuron, which has allowed detailed studies of each step between excitation and exoctytosis. Trains of action potentials induce transmembrane calcium entry through L-type channels. If the frequency of action potentials is above 5 Hz, summation of calcium transients upon individual action potentials increases the intracellular calcium concentration to activate calcium–induced calcium release. The amplified calcium wave activates motochondrial ATP synthesis that fuels the transport of vesicles to the plasma membrane. Serotonin that is released activates autoreceptors coupled to phospholipase C. Production of IP3 produces release of calcium that sustains the large-scale exocytosis. The swiss-clock workings of the release machinery for somatic exocytosis has a striking disadvantage. The essential calcium-releasing endoplasmic reticulum that lays between resting vesicles and the plasma membrane becomes an obstacle for the vesicle transport. Such architecture reduces drastically the thermodynamic efficiency of the vesicle transport and elevates its energy cost..


2021 ◽  
Vol 12 ◽  
Author(s):  
Jörg W. Wegener ◽  
Ahmed Wagdi ◽  
Eva Wagner ◽  
Dörthe M. Katschinski ◽  
Gerd Hasenfuss ◽  
...  

Missense mutations in the cardiac ryanodine receptor type 2 (RyR2) characteristically cause catecholaminergic arrhythmias. Reminiscent of the phenotype in patients, RyR2-R2474S knockin mice develop exercise-induced ventricular tachyarrhythmias. In cardiomyocytes, increased mitochondrial matrix Ca2+ uptake was recently linked to non-linearly enhanced ATP synthesis with important implications for cardiac redox metabolism. We hypothesize that catecholaminergic stimulation and contractile activity amplify mitochondrial oxidation pathologically in RyR2-R2474S cardiomyocytes. To investigate this question, we generated double transgenic RyR2-R2474S mice expressing a mitochondria-restricted fluorescent biosensor to monitor the glutathione redox potential (EGSH). Electrical field pacing-evoked RyR2-WT and RyR2-R2474S cardiomyocyte contractions resulted in a small but significant baseline EGSH increase. Importantly, β-adrenergic stimulation resulted in excessive EGSH oxidization of the mitochondrial matrix in RyR2-R2474S cardiomyocytes compared to baseline and RyR2-WT control. Physiologically β-adrenergic stimulation significantly increased mitochondrial EGSH further in intact beating RyR2-R2474S but not in RyR2-WT control Langendorff perfused hearts. Finally, this catecholaminergic EGSH increase was significantly attenuated following treatment with the RyR2 channel blocker dantrolene. Together, catecholaminergic stimulation and increased diastolic Ca2+ leak induce a strong, but dantrolene-inhibited mitochondrial EGSH oxidization in RyR2-R2474S cardiomyocytes.


Sign in / Sign up

Export Citation Format

Share Document