scholarly journals Thyroid hormone action in pituitary cells. Differences in the regulation of thyrotropin-releasing hormone receptors and growth hormone synthesis.

1979 ◽  
Vol 254 (10) ◽  
pp. 3907-3911 ◽  
Author(s):  
P M Hinkle ◽  
M H Perrone ◽  
T L Greer
2011 ◽  
Vol 74 (3) ◽  
pp. 346-353 ◽  
Author(s):  
Sebastián Susperreguy ◽  
Liliana Muñoz ◽  
Natalia Y. Tkalenko ◽  
Ivan D. Mascanfroni ◽  
Vanina A. Alamino ◽  
...  

1985 ◽  
Vol 104 (2) ◽  
pp. 201-204 ◽  
Author(s):  
J. A. Franklyn ◽  
J. R. E. Davis ◽  
D. B. Ramsden ◽  
M. C. Sheppard

ABSTRACT Circulating free thyroid hormone concentrations are reduced in subjects taking long-term phenytoin, a finding at variance with their euthyroid clinical state and normal serum TSH concentration. It is suggested, therefore, that phenytoin may modify the cellular effects of thyroid hormones. In order to examine the influence of phenytoin on thyroid hormone action in the pituitary gland we studied its effect on the binding of tri-iodothyronine (T3) to isolated nuclei prepared from rat anterior pituitary tissue. Phenytoin inhibited the nuclear binding of T3 in a dose-dependent fashion. Phenytoin also partially inhibited thyrotrophin-releasing hormone-stimulated TSH release from cultured rat anterior pituitary cells. These studies provide evidence for a direct effect of phenytoin on the thyrotroph mediated via nuclear T3 receptor binding. J. Endocr. (1985) 104, 201–204


2021 ◽  
Author(s):  
Marcus Heldmann ◽  
Krishna Chatterjee ◽  
Carla Moran ◽  
Berenike Rogge ◽  
Julia Steinhardt ◽  
...  

Background: Thyroid hormone action is mediated by two forms of thyroid hormone receptors (α,β) with differential tissue distribution. Thyroid hormone receptor β (TRβ) mutations lead to resistance to thyroid hormone action in tissues predominantly expressing the β form of the receptor (pituitary, liver). This study seeks to identify effects of mutant TRβ on pituitary size. Methods: High-resolution 3D T1-weighted magnetic resonance images were acquired in 19 patients with RTHβ in comparison to 19 healthy matched controls. Volumetric measurements of the pituitary gland were performed independently and blinded by four different raters (two neuroradiologists, one neurologist, one neuroscientist). Results: Patients with mutant TRβ (Resistance to Thyroid Hormone β,RΤΗβ) showed elevated fT3/4 levels with normal TSH levels, whereas healthy controls showed normal thyroid hormone levels. Imaging revealed smaller pituitary size in RTHβ patients in comparison to healthy controls (F(1,35)=7.05, p=0.012, partial η2 =0.17). Conclusion: RTHβ subjects have impaired sensitivity to thyroid hormones, along with decreased size of the pituitary gland.


Sign in / Sign up

Export Citation Format

Share Document