scholarly journals Protein synthesis in rabbit reticulocytes. A study of peptide chain initiation using native and beta-subunit-depleted eukaryotic initiation factor 2.

1982 ◽  
Vol 257 (3) ◽  
pp. 1282-1288
Author(s):  
A. Das ◽  
M.K. Bagchi ◽  
P. Ghosh-Dastidar ◽  
N.K. Gupta
1994 ◽  
Vol 266 (2) ◽  
pp. E193-E201 ◽  
Author(s):  
T. C. Vary ◽  
C. V. Jurasinski ◽  
A. M. Karinch ◽  
S. R. Kimball

Protein synthesis is stimulated at the level of peptide chain initiation in livers from rats with a sterile or septic abscess. In contrast, peptide chain initiation is inhibited in fast-twitch skeletal muscles from septic rats. We investigated the possible mechanisms responsible for these differential changes in peptide chain initiation between liver and skeletal muscle during sepsis by measuring the cellular content of eukaryotic initiation factor-2 (eIF-2), the extent of phosphorylation of the alpha-subunit of eIF-2, and the activity of eIF-2B. In skeletal muscle, neither the eIF-2 content nor the extent of phosphorylation of eIF-2 alpha was altered during sepsis. However, a significant decrease (P < 0.001) in eIF-2B activity was observed in fast-twitch muscles. In liver, neither the extent of phosphorylation of eIF-2 alpha nor the activity of eIF-2B was different in rats with a sterile or septic abscess compared with control. However, the amount of eIF-2 in liver was increased in both sterile inflammation and sepsis. The relative abundance of eIF-2 alpha mRNA was not increased in either condition compared with control. Analysis of the distribution of eIF-2 alpha mRNA from control rats revealed that only approximately 40% of the message was associated with polysomes. Sterile inflammation or sepsis caused a 50% increase in the proportion of eIF-2 alpha mRNA associated with the polysomes compared with control.(ABSTRACT TRUNCATED AT 250 WORDS)


2002 ◽  
Vol 22 (20) ◽  
pp. 7134-7146 ◽  
Author(s):  
Ke Zhan ◽  
Krishna M. Vattem ◽  
Bettina N. Bauer ◽  
Thomas E. Dever ◽  
Jane-Jane Chen ◽  
...  

ABSTRACT Protein synthesis is regulated by the phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α) in response to different environmental stresses. One member of the eIF2α kinase family, heme-regulated inhibitor kinase (HRI), is activated under heme-deficient conditions and blocks protein synthesis, principally globin, in mammalian erythroid cells. We identified two HRI-related kinases from Schizosaccharomyces pombe which have full-length homology with mammalian HRI. The two HRI-related kinases, named Hri1p and Hri2p, exhibit autokinase and kinase activity specific for Ser-51 of eIF2α, and both activities were inhibited in vitro by hemin, as previously described for mammalian HRI. Overexpression of Hri1p, Hri2p, or the human eIF2α kinase, double-stranded-RNA-dependent protein kinase (PKR), impeded growth of S. pombe due to elevated phosphorylation of eIF2α. Cells from strains with deletions of the hri1+ and hri2+ genes, individually or in combination, exhibited a reduced growth rate when exposed to heat shock or to arsenic compounds. Measurements of in vivo phosphorylation of eIF2α suggest that Hri1p and Hri2p differentially phosphorylate eIF2α in response to these stress conditions. These results demonstrate that HRI-related enzymes are not unique to vertebrates and suggest that these eIF2α kinases are important participants in diverse stress response pathways in some lower eukaryotes.


1992 ◽  
Vol 286 (1) ◽  
pp. 263-268 ◽  
Author(s):  
S R Kimball ◽  
T C Vary ◽  
L S Jefferson

Recent studies have suggested that the decline in protein synthesis that occurs in rat liver and brain during development and aging is associated with a decrease in the activity of eukaryotic initiation factor 2 (eIF-2). One way in which eIF-2 activity could be decreased in tissue extracts would be through a decrease in the activity of the GDP exchange factor, eIF-2B. In the present study, the activity of eIF-2B was measured in tissue extracts and was found to be less in older than in younger rats. Thus a decrease in eIF-2B activity could account for part of the decrease in protein synthesis that occurs during aging. Another way in which eIF-2 activity could be decreased would be through a decrease in amount of the protein. Therefore the amount of eIF-2 in various tissues was quantified by protein immunoblot analysis. We found that the amount of eIF-2 relative to total protein tended to fall with increasing age. Furthermore, eIF-2 content was directly proportional to the rate of protein synthesis in the tissues examined. Finally, slot-blot analysis of polyadenylated RNA revealed no significant change in the relative abundance of eIF-2 alpha mRNA with age. The last-mentioned experiments suggest that the synthesis of eIF-2 may be regulated through changes in the deficiency of translation of eIF-2 alpha mRNA rather than through changes in gene transcription.


Sign in / Sign up

Export Citation Format

Share Document