schizosaccharomyces pombe
Recently Published Documents


TOTAL DOCUMENTS

3001
(FIVE YEARS 170)

H-INDEX

98
(FIVE YEARS 6)

Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 165
Author(s):  
Peter Kolesar ◽  
Karel Stejskal ◽  
David Potesil ◽  
Johanne M. Murray ◽  
Jan J. Palecek

Structural Maintenance of Chromosomes (SMC) complexes are important for many aspects of the chromosomal organization. Unlike cohesin and condensin, the SMC5/6 complex contains a variant RING domain carried by its Nse1 subunit. RING domains are characteristic for ubiquitin ligases, and human NSE1 has been shown to possess ubiquitin-ligase activity in vitro. However, other studies were unable to show such activity. Here, we confirm Nse1 ubiquitin-ligase activity using purified Schizosaccharomyces pombe proteins. We demonstrate that the Nse1 ligase activity is stimulated by Nse3 and Nse4. We show that Nse1 specifically utilizes Ubc13/Mms2 E2 enzyme and interacts directly with ubiquitin. We identify the Nse1 mutation (R188E) that specifically disrupts its E3 activity and demonstrate that the Nse1-dependent ubiquitination is particularly important under replication stress. Moreover, we determine Nse4 (lysine K181) as the first known SMC5/6-associated Nse1 substrate. Interestingly, abolition of Nse4 modification at K181 leads to suppression of DNA-damage sensitivity of other SMC5/6 mutants. Altogether, this study brings new evidence for Nse1 ubiquitin ligase activity, significantly advancing our understanding of this enigmatic SMC5/6 function.


Genetics ◽  
2021 ◽  
Author(s):  
Midori A Harris ◽  
Kim M Rutherford ◽  
Jacqueline Hayles ◽  
Antonia Lock ◽  
Jürg Bähler ◽  
...  

Abstract PomBase (www.pombase.org), the model organism database (MOD) for the fission yeast Schizosaccharomyces pombe, supports research within and beyond the S. pombe community by integrating and presenting genetic, molecular, and cell biological knowledge into intuitive displays and comprehensive data collections. With new content, novel query capabilities, and biologist-friendly data summaries and visualisation, PomBase also drives innovation in the MOD community.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
José Fabricio López Hernández ◽  
Rachel M Helston ◽  
Jeffrey J Lange ◽  
R Blake Billmyre ◽  
Samantha H Schaffner ◽  
...  

Meiotic drivers are genetic elements that break Mendel's law of segregation to be transmitted into more than half of the offspring produced by a heterozygote. The success of a driver relies on outcrossing (mating between individuals from distinct lineages) because drivers gain their advantage in heterozygotes. It is, therefore, curious that Schizosaccharomyces pombe, a species reported to rarely outcross, harbors many meiotic drivers. To address this paradox, we measured mating phenotypes in S. pombe natural isolates. We found that the propensity for cells from distinct clonal lineages to mate varies between natural isolates and can be affected both by cell density and by the available sexual partners. Additionally, we found that the observed levels of preferential mating between cells from the same clonal lineage can slow, but not prevent, the spread of a wtf meiotic driver in the absence of additional fitness costs linked to the driver. These analyses reveal parameters critical to understanding the evolution of S. pombe and help explain the success of meiotic drivers in this species.


2021 ◽  
Vol 7 (12) ◽  
pp. 1069
Author(s):  
Giuseppe D. Tocchini-Valentini ◽  
Glauco P. Tocchini-Valentini

We have characterized a homodimeric tRNA endonuclease from the euryarchaeota Ferroplasma acidarmanus (FERAC), a facultative anaerobe which can grow at temperatures ranging from 35 to 42 °C. This enzyme, contrary to the eukaryal tRNA endonucleases and the homotetrameric Methanocaldococcus jannaschii (METJA) homologs, is able to cleave minimal BHB (bulge–helix–bulge) substrates at 30 °C. The expression of this enzyme in Schizosaccharomyces pombe (SCHPO) enables the use of its properties as effectors by inserting BHB motif introns into hairpin loops normally seen in mRNA transcripts. In addition, the FERAC endonuclease can create proteins with new functionalities through the recombination of protein domains.


2021 ◽  
Vol 22 (24) ◽  
pp. 13272
Author(s):  
Mária Péter ◽  
Péter Gudmann ◽  
Zoltán Kóta ◽  
Zsolt Török ◽  
László Vígh ◽  
...  

Homeostatic maintenance of the physicochemical properties of cellular membranes is essential for life. In yeast, trehalose accumulation and lipid remodeling enable rapid adaptation to perturbations, but their crosstalk was not investigated. Here we report about the first in-depth, mass spectrometry-based lipidomic analysis on heat-stressed Schizosaccharomyces pombe mutants which are unable to synthesize (tps1Δ) or degrade (ntp1Δ) trehalose. Our experiments provide data about the role of trehalose as a membrane protectant in heat stress. We show that under conditions of trehalose deficiency, heat stress induced a comprehensive, distinctively high-degree lipidome reshaping in which structural, signaling and storage lipids acted in concert. In the absence of trehalose, membrane lipid remodeling was more pronounced and increased with increasing stress dose. It could be characterized by decreasing unsaturation and increasing acyl chain length, and required de novo synthesis of stearic acid (18:0) and very long-chain fatty acids to serve membrane rigidification. In addition, we detected enhanced and sustained signaling lipid generation to ensure transient cell cycle arrest as well as more intense triglyceride synthesis to accommodate membrane lipid-derived oleic acid (18:1) and newly synthesized but unused fatty acids. We also demonstrate that these changes were able to partially substitute for the missing role of trehalose and conferred measurable stress tolerance to fission yeast cells.


2021 ◽  
Author(s):  
Joёl Lemière ◽  
Paula Real-Calderon ◽  
Liam J. Holt ◽  
Thomas G. Fai ◽  
Fred Chang

AbstractThe size of the nucleus scales robustly with cell size so that the nuclear-to-cell volume ratio (N/C ratio) is maintained during cell growth in many cell types. The mechanism responsible for this scaling remains mysterious. Previous studies have established that the N/C ratio is not determined by DNA amount, but is instead influenced by factors such as nuclear envelope mechanics and nuclear transport. Here, we developed a quantitative model for nuclear size control based upon colloid osmotic pressure and tested key predictions in the fission yeast Schizosaccharomyces pombe. This model posits that the N/C ratio is determined by the numbers of macromolecules in the nucleoplasm and cytoplasm. Osmotic shift experiments showed that the fission yeast nucleus behaves as an ideal osmometer whose volume is primarily dictated by osmotic forces. Inhibition of nuclear export caused accumulation of macromolecules and an increase in crowding in the nucleoplasm, leading to nuclear swelling. We further demonstrated that the N/C ratio is maintained by a homeostasis mechanism based upon synthesis of macromolecules during growth. These studies demonstrate the functions of colloid osmotic pressure in intracellular organization and size control.


2021 ◽  
Author(s):  
Christos Andreadis ◽  
Tianhao Li ◽  
Ji-Long Liu

AbstractCTP synthase (CTPS), a metabolic enzyme responsible for the de novo synthesis of CTP, can form filamentous structures termed cytoophidia, which are evolutionarily conserved from bacteria to humans. Here we used Schizosaccharomyces pombe to study the cytoophidium assembly regulation by ubiquitination. We tested the CTP synthase’s capacity to be epigenetically modified by ubiquitin or be affected by the ubiquitination state of the cell, showed that CTPS is immunoprecipitated with ubiquitin, and that ubiquitination is important for the maintenance of the CTPS filamentous structure in fission yeast. We have identified proteins which are in complex with CTPS, including specific ubiquitination regulators which significantly affect CTPS filamentation, and mapped probable ubiquitination targets on CTPS. Furthermore, we discovered that a cohort of deubiquitinating enzymes is significant for the regulation of cytoophidium morphology. Our study provides a framework for the analysis of the effects that ubiquitination and deubiquitination have on the formation of CTPS filaments.


Author(s):  
David Virant ◽  
Ilijana Vojnovic ◽  
Jannik Winkelmeier ◽  
Marc Endesfelder ◽  
Bartosz Turkowyd ◽  
...  

AbstractThe key to ensuring proper chromosome segregation during mitosis is the kinetochore complex. This large and tightly regulated multi-protein complex links the centromeric chromatin to the microtubules attached to the spindle pole body and as such leads the segregation process. Understanding the architecture, function and regulation of this vital complex is therefore essential. However, due to its complexity and dynamics, only its individual subcomplexes could be studied in high-resolution structural detail so far.In this study we construct a nanometer-precise in situ map of the human-like regional kinetochore of Schizosaccharomyces pombe (S. pombe) using multi-color single-molecule localization microscopy (SMLM). We measure each kinetochore protein of interest (POI) in conjunction with two reference proteins, cnp1CENP-A at the centromere and sad1 at the spindle pole. This arrangement allows us to determine the cell cycle and in particularly the mitotic plane, and to visualize individual centromere regions separately. From these data, we determine protein distances within the complex using Bayesian inference, establish the stoichiometry of each POI for individual chromosomes and, consequently, build an in situ kinetochore model for S.pombe with so-far unprecedented precision. Being able to quantify the kinetochore proteins within the full in situ kinetochore structure, we provide valuable new insights in the S.pombe kinetochore architecture.


Sign in / Sign up

Export Citation Format

Share Document