sterile inflammation
Recently Published Documents


TOTAL DOCUMENTS

577
(FIVE YEARS 272)

H-INDEX

49
(FIVE YEARS 10)

Author(s):  
Xing‐Jie Wang ◽  
Xiao‐Qing Ni ◽  
Sheng Zhao ◽  
Rui‐Zhe Zhao ◽  
Xiao‐Hai Wang ◽  
...  

Author(s):  
Mateusz Adamiak ◽  
Andrzej Ciechanowicz ◽  
Vira Chumak ◽  
Kamila Bujko ◽  
Janina Ratajczak ◽  
...  

AbstractWe reported in the past that activation of the third (C3) and fifth element (C5) of complement cascade (ComC) is required for a proper homing and engraftment of transplanted hematopoietic stem/progenitor cells (HSPCs). Since myeloablative conditioning for transplantation triggers in recipient bone marrow (BM) state of sterile inflammation, we have become interested in the role of complement in this process and the potential involvement of alternative pathway of ComC activation. We noticed that factor B deficient mice (FB-KO) that do not activate properly alternative pathway, engraft poorly with BM cells from normal wild type (WT) mice. We observed defects both in homing and engraftment of transplanted HSPCs. To shed more light on these phenomena, we found that myeloablative lethal irradiation conditioning for transplantation activates purinergic signaling, ComC, and Nlrp3 inflammasome in WT mice, which is significantly impaired in FB-KO animals. Our proteomics analysis revealed that conditioned for transplantation lethally irradiated FB-KO compared to normal control animals have lower expression of several proteins involved in positive regulation of cell migration, trans-endothelial migration, immune system, cellular signaling protein, and metabolic pathways. Overall, our recent study further supports the role of innate immunity in homing and engraftment of HSPCs. Graphical Abstract


2022 ◽  
Vol 23 (2) ◽  
pp. 600
Author(s):  
Chelsy L. Cliff ◽  
Bethany M. Williams ◽  
Christos E. Chadjichristos ◽  
Ulrik Mouritzen ◽  
Paul E. Squires ◽  
...  

Of increasing prevalence, diabetes is characterised by elevated blood glucose and chronic inflammation that precedes the onset of multiple secondary complications, including those of the kidney and the eye. As the leading cause of end stage renal disease and blindness in the working population, more than ever is there a demand to develop clinical interventions which can both delay and prevent disease progression. Connexins are membrane bound proteins that can form pores (hemichannels) in the cell membrane. Gated by cellular stress and injury, they open under pathophysiological conditions and in doing so release ‘danger signals’ including adenosine triphosphate into the extracellular environment. Linked to sterile inflammation via activation of the nod-like receptor protein 3 inflammasome, targeting aberrant hemichannel activity and the release of these danger signals has met with favourable outcomes in multiple models of disease, including secondary complications of diabetes. In this review, we provide a comprehensive update on those studies which document a role for aberrant connexin hemichannel activity in the pathogenesis of both diabetic eye and kidney disease, ahead of evaluating the efficacy of blocking connexin-43 specific hemichannels in these target tissues on tissue health and function.


Author(s):  
Karen Aymonnier ◽  
Julie Ng ◽  
Laura E Fredenburgh ◽  
Katherin Zambrano-Vera ◽  
Patrick Münzer ◽  
...  

Infection by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) engages the inflammasome in monocytes and macrophages and leads to the cytokine storm in COVID-19. Neutrophils, the most abundant leukocytes, release neutrophil extracellular traps (NETs), which have been implicated in the pathogenesis of COVID-19. Our recent study shows that activation of the NLRP3 inflammasome is important for NET release in sterile inflammation. However, the role of neutrophil inflammasome formation in human disease is unknown. We hypothesized that SARS-COV-2 infection may induce inflammasome activation in neutrophils. We also aimed to assess the localization of inflammasome formation, (i.e. ASC speck assembly), and timing relative to NETosis in stimulated neutrophils by real time video microscopy. Neutrophils isolated from severe COVID-19 patients demonstrated that approximately 2% of neutrophils in both the peripheral blood and tracheal aspirates presented ASC speck. ASC speck was observed in neutrophils with an intact poly-lobulated nucleus, suggesting early formation during neutrophil activation. Additionally, 40% of nuclei were positive for citrullinated histone H3, and there was a significant correlation between speck formation and nuclear histone citrullination. Time-lapse microscopy in LPS-stimulated neutrophils from fluorescent ASC reporter mice showed that ASC speck formed transiently and at the microtubule organizing center, long before NET release. Our study shows that ASC speck is present in neutrophils from COVID-19 patients with respiratory failure and that it forms early in NETosis. Our findings suggest that inhibition of neutrophil inflammasomes may be beneficial in COVID-19.


2022 ◽  
Author(s):  
Daniel Divin ◽  
Mercedes Gomez Samblas ◽  
Nithya Kuttiyarthu Veetil ◽  
Eleni Voukali ◽  
Zuzana Swiderska ◽  
...  

In vertebrates, an ancient duplication in the genes for cannabinoid receptors (CNRs) allowed the evolution of specialised endocannabinoid receptors expressed in the brain (CNR1) and the periphery (CNR2). While dominantly conserved throughout vertebrate phylogeny, our comparative genomic analysis suggests that certain taxa may have lost either the CNR1 regulator of neural processes or, more frequently, the CNR2 involved in immune regulation. Focussing on conspicuous CNR2 pseudogenization in parrots (Psittaciformes), a diversified crown lineage of cognitively-advanced birds, we highlight possible functional effects of such a loss. Parrots appear to have lost the CNR2 gene at at least two separate occasions due to chromosomal rearrangement. Using gene expression data from the brain and periphery of birds with experimentally-induced sterile inflammation, we compare CNR and inflammatory marker (interleukin 1 beta, IL1B) expression patterns in CNR2-deficient parrots (represented by the budgerigar, Melopsittacus undulatus and five other parrot species) with CNR2-intact passerines (represented by the zebra finch, Taeniopygia guttata). Though no significant changes in CNR expression were observed in either parrots or passerines during inflammation of the brain or periphery, we detected a significant up-regulation of IL1B expression in the brain after stimulation with lipopolysaccharide (LPS) only in parrots. As our analysis failed to show evidence for selection on altered CNR1 functionality in parrots, compared to other birds, CNR1 is unlikely to be involved in compensation for CNR2 loss in modulation of the neuroimmune interaction. Thus, our results provide evidence for the functional importance of CNR2 pseudogenization for regulation of neuroinflammation.


2021 ◽  
Vol 6 (66) ◽  
Author(s):  
Nathalie Niyonzima ◽  
Jubayer Rahman ◽  
Natalia Kunz ◽  
Erin E. West ◽  
Tilo Freiwald ◽  
...  
Keyword(s):  

2021 ◽  
Vol 8 ◽  
Author(s):  
Jaqueline Herrmann ◽  
Mengdi Xia ◽  
Manasa Reddy Gummi ◽  
Anna Greco ◽  
Annika Schacke ◽  
...  

Calcification of the vessel wall as one structural pathology of aged vessels is associated with high cardiovascular mortality of elderly patients. Aging is linked to chronic sterile inflammation and high burden of reactive oxygen species (ROS), leading to activation of pattern recognition receptors (PRRs) such as Nlrp3 in vascular cells. The current study investigates the role of PRR activation in the calcification of vascular smooth muscle cells (VSMCs). Therefore, in vitro cell culture of primary rat VSMCs and ex vivo aortic stimulations were used to analyze osteogenic, senescence and inflammatory markers via real-time PCR, in situ RNA hybridization, Western Blot, photometric assays and histological staining. Induction of ROS and DNA-damage by doxorubicin induces a shift of VSMC phenotype toward the expression of osteogenic, senescence and inflammatory proteins. Induction of calcification is dependent on Nlrp3 activity. Il-1β as a downstream target of Nlrp3 induces the synthetic, pro-calcifying VSMC phenotype. Inhibition of PRR with subsequent reduction of chronic inflammation might be an interesting target for reduction of calcification of VSMCs, with subsequent reduction of cardiovascular mortality of patients suffering from vessel stiffness.


Psychiatry ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 76-89
Author(s):  
E. G. Cheremnykh ◽  
P. A. Ivanov ◽  
M. I. Factor ◽  
A. N. Pozdnyacova ◽  
Y. E. Shilov ◽  
...  

Introduction: the complement system can be a critical factor in the outcome of SARS-CoV-2 viral infection. Many mental illnesses are characterized by systemic sterile inflammation, in which the complement system is an obligatory participant. Purpose: to present an analysis of scientific data on the role of the complement system in the pathogenesis of viral diseases and the characteristics of the course of COVID-19 in mental patients. Material and methods: the keywords “complement system” “SARS-CoV-2”, “inhibition of the complement system”, “COVID-19” “mental illness” were used to search scientific articles in the databases MEDLINE, PubMed and other bibliographic sources. Conclusion: patients with mental illness are at risk due to physiological and mental characteristics, and infection with SARS-CoV-2 can provoke a relapse of the underlying disease. Therapeutic inhibition of complement system will help reduce this risk and reduce the likelihood of severe complications from systemic inflammation caused by this infection.


2021 ◽  
Author(s):  
Takahiro Suzuki ◽  
Takeru Abe ◽  
Mika Ikegaya ◽  
Kaori Suzuki ◽  
Haruka Yabukami ◽  
...  

In vitro functional sperm production is important for understanding spermatogenesis and for the treatment of male infertility. Here, we describe similarities and differences between testis tissues in vivo and in vitro and clarify abnormalities in the early stage of in vitro spermatogenesis at single-cell resolution. While in vitro spermatogenesis progressed similarly to in vivo spermatogenesis until the early pachytene spermatocyte stage, a noticeable acute inflammatory response occurred in immune cells and non-immune testicular somatic cells immediately after cultivation. Inhibitor treatment revealed that NLRP3 inflammasome signaling is key to the inflammation. We observed damaged/dead germ cell accumulation in cultured testis, which may be due to dysfunctional phagocytosis by Sertoli cells. Our data revealed abnormal testicular milieu of in vitro cultured testes caused by tissue-wide sterile inflammation, in which the danger-associated molecular pattern-NLRP3 inflammasome axis may be a key element.


Sign in / Sign up

Export Citation Format

Share Document