scholarly journals Purification and characterization of VDE, a site-specific endonuclease from the yeast Saccharomyces cerevisiae.

1993 ◽  
Vol 268 (29) ◽  
pp. 21844-21853
Author(s):  
F.S. Gimble ◽  
J Thorner
Gene ◽  
1992 ◽  
Vol 116 (2) ◽  
pp. 119-127 ◽  
Author(s):  
Ann E. Blechl ◽  
Kristin S. Thrasher ◽  
William H. Vensel ◽  
Frank C. Greene

1987 ◽  
Vol 7 (6) ◽  
pp. 2087-2096
Author(s):  
B Sauer

The procaryotic cre-lox site-specific recombination system of coliphage P1 was shown to function in an efficient manner in a eucaryote, the yeast Saccharomyces cerevisiae. The cre gene, which codes for a site-specific recombinase, was placed under control of the yeast GALI promoter. lox sites flanking the LEU2 gene were integrated into two different chromosomes in both orientations. Excisive recombination at the lox sites (as measured by loss of the LEU2 gene) was promoted efficiently and accurately by the Cre protein and was dependent upon induction by galactose. These results demonstrate that a procaryotic recombinase can enter a eucaryotic nucleus and, moreover, that the ability of the Cre recombinase to perform precise recombination events on the chromosomes of S. cerevisiae is unimpaired by chromatin structure.


1987 ◽  
Vol 7 (6) ◽  
pp. 2087-2096 ◽  
Author(s):  
B Sauer

The procaryotic cre-lox site-specific recombination system of coliphage P1 was shown to function in an efficient manner in a eucaryote, the yeast Saccharomyces cerevisiae. The cre gene, which codes for a site-specific recombinase, was placed under control of the yeast GALI promoter. lox sites flanking the LEU2 gene were integrated into two different chromosomes in both orientations. Excisive recombination at the lox sites (as measured by loss of the LEU2 gene) was promoted efficiently and accurately by the Cre protein and was dependent upon induction by galactose. These results demonstrate that a procaryotic recombinase can enter a eucaryotic nucleus and, moreover, that the ability of the Cre recombinase to perform precise recombination events on the chromosomes of S. cerevisiae is unimpaired by chromatin structure.


Sign in / Sign up

Export Citation Format

Share Document