Purification and characterization of protein synthesis initiation factor eIF-4E from the yeast Saccharomyces cerevisiae

Biochemistry ◽  
1985 ◽  
Vol 24 (22) ◽  
pp. 6085-6089 ◽  
Author(s):  
Michael Altmann ◽  
Isaac Edery ◽  
Nahum Sonenberg ◽  
Hans Trachsel
1987 ◽  
Vol 7 (3) ◽  
pp. 998-1003
Author(s):  
M Altmann ◽  
C Handschin ◽  
H Trachsel

We have isolated genomic and cDNA clones encoding protein synthesis initiation factor eIF-4E (mRNA cap-binding protein) of the yeast Saccharomyces cerevisiae. Their identity was established by expression of a cDNA in Escherichia coli. This cDNA encodes a protein indistinguishable from purified eIF-4E in terms of molecular weight, binding to and elution from m7GDP-agarose affinity columns, and proteolytic peptide pattern. The eIF-4E gene was isolated by hybridization of cDNA to clones of a yeast genomic library. The gene lacks introns, is present in one copy per haploid genome, and encodes a protein of 213 amino acid residues. Gene disruption experiments showed that the gene is essential for growth.


1987 ◽  
Vol 7 (3) ◽  
pp. 998-1003 ◽  
Author(s):  
M Altmann ◽  
C Handschin ◽  
H Trachsel

We have isolated genomic and cDNA clones encoding protein synthesis initiation factor eIF-4E (mRNA cap-binding protein) of the yeast Saccharomyces cerevisiae. Their identity was established by expression of a cDNA in Escherichia coli. This cDNA encodes a protein indistinguishable from purified eIF-4E in terms of molecular weight, binding to and elution from m7GDP-agarose affinity columns, and proteolytic peptide pattern. The eIF-4E gene was isolated by hybridization of cDNA to clones of a yeast genomic library. The gene lacks introns, is present in one copy per haploid genome, and encodes a protein of 213 amino acid residues. Gene disruption experiments showed that the gene is essential for growth.


Sign in / Sign up

Export Citation Format

Share Document