Speeds of sound, perfect-gas heat capacities, and acoustic virial coefficients for methane determined using a spherical resonator at temperatures between 255 K and 300 K and pressures in the range 171 kPa to 7.1 MPa

1992 ◽  
Vol 24 (12) ◽  
pp. 1257-1274 ◽  
Author(s):  
M.B. Ewing ◽  
A.R.H. Goodwin
Author(s):  
C. G. Gray ◽  
K. E. Gubbins

The application of statistical mechanics to the study of fluids over the past fifty years † or so has progressed through a series of problems of gradually increasing difficulty. The first and most elementary calculations were for the thermodynamic functions (heat capacities, entropies, free energies, etc.) of perfect gases. These properties are related to the molecular energy levels, which for perfect gases can be determined theoretically (by quantum calculations) or experimentally (by spectroscopic methods, for example). For simple molecules (CO2 , CH4 , etc.) the energy levels, and hence the thermodynamic properties, can be determined with great accuracy, and even for quite complex organic molecules it is now possible to obtain thermodynamic properties with satisfactory accuracy. With the advent of digital computers it became possible to calculate thermodynamic properties for a wide variety of substances and temperatures, and several useful tabulations of perfect gas properties now exist. Having successfully treated the perfect gas, it was natural to consider gases of moderate density, where intermolecular forces begin to have an effect, by expanding the thermodynamic functions in a power series (or virial series) in density. Although the mathematical basis for a theoretical treatment of this series was laid by Ursell in 1927, it was not exploited until ten years later, when Mayer re-examined the problem. Since that time a great deal of effort has been put into evaluating the virial coefficients that appear in the series for a variety of intermolecular force models. As the expressions for the virial coefficients are exact, they provide a very useful means of checking such force models by comparison of calculated and experimental coefficients. While the theory of dilute gases at equilibrium is essentially complete, this is far from being the case for all dense gases and liquids. The virial series cannot be applied directly to liquids. As an alternative to the ‘dense gas’ approach to liquids, there were early attempts to treat liquids as disordered solids by using cell or lattice theories; these were popular from the mid-1930s until the early 1960s.


2021 ◽  
Vol 31 ◽  
pp. 100596
Author(s):  
Sunita Malik ◽  
Poonam Jangra Darolia ◽  
Dimple Sharma ◽  
Vinod Kumar Sharma

2003 ◽  
Vol 31 (3) ◽  
pp. 189-200 ◽  
Author(s):  
Jeffery D. Lewins

Many of the conventional results obtained when optimising the performance of an intercooler during compression using a perfect gas model can be obtained when the restrictions of the model are relaxed to an ideal gas. That is, we now have temperature-dependent specific heat capacities but retain the equation of state pV = RT. This note illustrates the theme.


2004 ◽  
Vol 49 (2) ◽  
pp. 333-338 ◽  
Author(s):  
Diego González-Salgado ◽  
Jose Peleteiro ◽  
Jacobo Troncoso ◽  
Enrique Carballo ◽  
Luís Romaní ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document