scholarly journals On the structure of orthomodular lattices satisfying the chain condition

1968 ◽  
Vol 4 (3) ◽  
pp. 210-218 ◽  
Author(s):  
R.J. Greechie
Author(s):  
E. K. R Nagarajan ◽  
D. Umadevi

Studia Logica ◽  
2021 ◽  
Author(s):  
D. Fazio ◽  
A. Ledda ◽  
F. Paoli

AbstractThe variety of (pointed) residuated lattices includes a vast proportion of the classes of algebras that are relevant for algebraic logic, e.g., $$\ell $$ ℓ -groups, Heyting algebras, MV-algebras, or De Morgan monoids. Among the outliers, one counts orthomodular lattices and other varieties of quantum algebras. We suggest a common framework—pointed left-residuated $$\ell $$ ℓ -groupoids—where residuated structures and quantum structures can all be accommodated. We investigate the lattice of subvarieties of pointed left-residuated $$\ell $$ ℓ -groupoids, their ideals, and develop a theory of left nuclei. Finally, we extend some parts of the theory of join-completions of residuated $$\ell $$ ℓ -groupoids to the left-residuated case, giving a new proof of MacLaren’s theorem for orthomodular lattices.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 164
Author(s):  
Songsong Dai

This paper studies rough approximation via join and meet on a complete orthomodular lattice. Different from Boolean algebra, the distributive law of join over meet does not hold in orthomodular lattices. Some properties of rough approximation rely on the distributive law. Furthermore, we study the relationship among the distributive law, rough approximation and orthomodular lattice-valued relation.


1973 ◽  
Vol 27 (2) ◽  
pp. 414-421 ◽  
Author(s):  
Daniel J Britten
Keyword(s):  

1949 ◽  
Vol 1 (2) ◽  
pp. 125-152 ◽  
Author(s):  
Ernst Snapper

The purpose of this paper is to investigate completely indecomposable modules. A completely indecomposable module is an additive abelian group with a ring A as operator domain, where the following four conditions are satisfied.1-1. A is a commutative ring and has a unit element which is unit operator for .1-2. The submodules of satisfy the ascending chain condition. (Submodule will always mean invariant submodule.)


1965 ◽  
Vol 17 ◽  
pp. 40-51 ◽  
Author(s):  
D. J. Foulis

In (2, 3, 4, and 5), the author has established a connection between orthomodular lattices and Baer *-semigroups. In brief, the connection is as follows. The lattice of closed projections of any Baer *-semigroup forms an orthomodular lattice. Conversely, if L is any orthomodular lattice, there exists a Baer *-semigroup S which co-ordinatizes L in the sense that L is isomorphic to the lattice of closed projections in S. In this note we shall assume that the reader is familiar with the results and the notation of the quoted papers.


Sign in / Sign up

Export Citation Format

Share Document