Modelling the early development of secondary side stress corrosion cracks in steam generator tubes using incomplete random tessellation

2002 ◽  
Vol 212 (1-3) ◽  
pp. 21-29 ◽  
Author(s):  
Leon Cizelj ◽  
Heinz Riesch-Oppermann
Author(s):  
Deok Hyun Lee ◽  
Do Haeng Hur ◽  
Myung Sik Choi ◽  
Kyung Mo Kim ◽  
Jung Ho Han ◽  
...  

Occurrences of a stress corrosion cracking in the steam generator tubes of operating nuclear power plants are closely related to the residual stress existing in the local region of a geometric change, that is, expansion transition, u-bend, ding, dent, bulge, etc. Therefore, information on the location, type and quantitative size of a geometric anomaly existing in a tube is a prerequisite to the activity of a non destructive inspection for an alert detection of an earlier crack and the prediction of a further crack evolution [1].


Author(s):  
Leon Cizelj ◽  
Heinz Riesch-Oppermann

Computational algorithms aiming at modeling and visualization of the initiation and growth of intergranular stress corrosion cracks (e.g., in the steam generator tubes) on the grain-size scale have already been proposed. Main focus of the paper addresses the influence of randomly oriented anisotropic elasto-plastic grains on the microscopic stress fields at crack tips. The limited number of calculations indicate that the incompatibility strains, which develop along the boundaries of randomly oriented grains, influence the local stress fields (J-integrals) at crack tips significantly.


1992 ◽  
Vol 134 (2-3) ◽  
pp. 199-215 ◽  
Author(s):  
V.N. Shah ◽  
D.B. Lowenstein ◽  
A.P.L. Turner ◽  
S.R. Ward ◽  
J.A. Gorman ◽  
...  

Author(s):  
Muhammad Aadil ◽  
Rab Nawaz ◽  
Ajmal Shah ◽  
Kamran Rasheed Qureshi

Abstract This research presents numerical study of deposition efficiency and decontamination factor of radioactive nuclide in steam generator tubes of a typical 325 MWe PWR. To find out the deposition of aerosol, the discrete phase model (DPM) has been used. The flow has been characterized as compressible, adiabatic, turbulent and wall bounded. When steam generator tube gets ruptured, the radioactive nuclides can escape from primary side and create a radioactive field in the secondary side. This can be harmful for the personnel working at the plant. Therefore, in order to ensure the safety of the plant and personnel, it is important to study the particles deposition on the wall of steam generator tubes. In the present study, a CFD methodology has been first developed and validated with the published results. After methodology validation, it has been applied to the U-tube of a typical PWR steam generator. It has been observed that due to the action of centrifugal force near the bent, the velocity magnitude is high towards the inner wall and the flow separates at the bent entrance. Furthermore, the flow inside the tube is rotational with vortices throughout the domain due to the presence of the bent. Finally, the deposition efficiency and decontamination factor have been calculated and it has been observed that both increase with the increase in particle size due to inertial effects.


Sign in / Sign up

Export Citation Format

Share Document