Neuronal nitric oxide synthase (nNOS) expression in the epithelial neuroendocrine cell system and nerve fibers in the gill of the catfish, Heteropneustes fossilis

1999 ◽  
Vol 101 (4) ◽  
pp. 437-448 ◽  
Author(s):  
Angela Mauceri ◽  
Salvatore Fasulo ◽  
Luigi Ainis ◽  
Aurelio Licata ◽  
Eugenia Rita lauriano ◽  
...  
2011 ◽  
Vol 86 (3-4) ◽  
pp. 239-245 ◽  
Author(s):  
Fábio Alves Aguila ◽  
Gabriela Ravanelli Oliveira-Pelegrin ◽  
Song Tieng Yao ◽  
David Murphy ◽  
Maria José Alves Rocha

Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Arjun Vivek Pendharkar ◽  
Daniel L Smerin ◽  
Lorenzo Gonzales ◽  
Eric Wang ◽  
Sabrina L Levy ◽  
...  

Abstract INTRODUCTION Poststroke optogenetic stimulation has been shown to enhance neurovascular coupling and functional recovery. Neuronal nitric oxide synthase (nNOS) has been implicated as a key regulator of neurovascular response in acute stroke but its role in subacute recovery remains unclear. Here we investigate nNOS expression in stroke mice undergoing optogenetic stimulation of the contralesional lateral cerebellar nucleus (cLCN). We also examine the effects of nNOS inhibition on functional recovery using a pharmacological inhibitor targeting nNOS. METHODS Transgenic Thy1-ChR2-YFP male mice (10-12 wk) were used. Stereotaxic surgery was performed to implant a fiber cannula in the cLCN and animals underwent intraluminal middle cerebral artery suture occlusion (30 min). Optogenetic stimulation began at poststroke (PD) day 5 and continued until PD14. Sensorimotor tests were used to assess behavioral recovery at PD4, 7, 10, and 14. At PD15, primary motor cortex from both ipsi- and contralesional motor cortex (iM1, cM1) were dissected. nNOS mRNA and protein levels were examined using quantitative polymerase chain reaction and western blot. In another set of studies, nNOS inhibitor ARL 17477 dihydrochloride (10 mg/kg, intraperitoneally) was administered daily between PD5-14 and functional recovery was evaluated using sensorimotor tests. RESULTS cLCN stimulated stroke mice demonstrated significant improvement in speed (cm/s) on the rotating beam task at PD10 and 14 day (P < .05, P < .001 respectively). nNOS mRNA and protein expression was significantly and selectively decreased in cM1 of cLCN stimulated mice (P < .05). The reduced nNOS expression in cM1 was negatively correlated with improved recovery (R2 = −0.839, Pearson P = .009). nNOS inhibitor-treated stroke mice exhibited a significant functional improvement in speed at PD10, when compared to stroke mice receiving vehicle (saline) (P < .05). CONCLUSION Our results suggest that nNOS may play a maladaptive role in poststroke recovery. Optogenetic stimulation of cLCN and systemic nNOS inhibition produce functional benefits after stroke.


2004 ◽  
Vol 999 (2) ◽  
pp. 231-236 ◽  
Author(s):  
Kyeung Min Joo ◽  
Yoon Hee Chung ◽  
Chung Min Shin ◽  
Yun Jung Lee ◽  
Choong Ik Cha

2020 ◽  
Author(s):  
Jeremy Sprouse ◽  
Chethan Sampath ◽  
PANDU GANGULA

Abstract Background: Gastroparesis, a condition of abnormal gastric emptying, is most commonly observed in diabetic women. To date, the role of ovarian hormones and/or gastric hormone receptors on regulating nitrergic-mediated gastric motility remains inconclusive. Aim: The purpose of this study is to investigate whether sex hormones/their receptors can attenuate altered Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), neuronal Nitric Oxide Synthase (nNOS) expression and nitrergic relaxation in gastric neuromuscular tissues exposed to in-vitro hyperglycemia (HG). Methods: Gastric neuromuscular sections from adult female C57BL/6J mice were incubated in normoglycemic (NG, 5mM) or hyperglycemic (30 mM or 50 mM) conditions in the presence or absence of selective estrogen receptor (ER) agonists (ERα /PPT or ERβ: DPN); or non-selective sex hormone receptor antagonists (ER/ICI 182,780, or progesterone receptor (PR)/ RU486) for 48 hours. mRNA, protein expression and nitrergic relaxation of circular gastric neuromuscular strips were assessed. Results: Our findings in HG, compared to NG, demonstrate a significant reduction in ER, Nrf2, and nNOS expression in gastric specimens. In addition, in-vitro treatment with sex hormones and/or their agonists significantly (*p<0.05) restored Nrf2/nNOSα expression and total nitrite production. Conversely, ER, but not PR, antagonist significantly reduced Nrf2/nNOSα expression and nitrergic relaxation. Conclusions: Our data suggest that ER’s can regulate nitrergic function by improving Nrf2/nNOS expression in experimental hyperglycemia.


2008 ◽  
Vol 294 (3) ◽  
pp. R851-R857 ◽  
Author(s):  
Xavier Gamé ◽  
Julien Allard ◽  
Ghislaine Escourrou ◽  
Pierre Gourdy ◽  
Ivan Tack ◽  
...  

Estrogens are known to modulate lower urinary tract (LUT) trophicity and neuronal nitric oxide synthase (nNOS) expression in several organs. The aim of this study was to explore the effects of endogenous and supraestrus levels of 17β-estradiol (E2) on LUT and urethral nNOS expression and function. LUT function and histology and urethral nNOS expression were studied in adult female mice subjected either to sham surgery, surgical castration, or castration plus chronic E2 supplementation (80 μg·kg−1·day−1, i.e., pregnancy level). The micturition pattern was profoundly altered by long-term supraestrus levels of E2 with decreased frequency paralleled by increased residual volumes higher than those of ovariectomized mice. Urethral resistance was increased twofold in E2-treated mice, with no structural changes in urethra, supporting a pure tonic mechanism. Acute nNOS inhibition by 7-nitroindazole decreased frequency and increased residual volumes in ovariectomized mice but had no additive effect on the micturition pattern of long-term supraestrus mice, showing that long-term supraestrus E2 levels and acute inhibition of nNOS activity had similar functional effects. Finally, E2 decreased urethral nNOS expression in ovariectomized mice. Long-term supraestrus levels of E2 increased urethral tone through inhibition of nNOS expression, whereas physiological levels of E2 had no effect.


1995 ◽  
Vol 20 (1) ◽  
pp. 49-53 ◽  
Author(s):  
L. T. Larsson ◽  
Z. Shen ◽  
E. Ekblad ◽  
F. Sundler ◽  
P. Aim ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jeremy Sprouse ◽  
Chethan Sampath ◽  
Pandu R. Gangula

Abstract Background Gastroparesis, a condition of abnormal gastric emptying, is most commonly observed in diabetic women. To date, the role of ovarian hormones and/or gastric hormone receptors on regulating nitrergic-mediated gastric motility remains inconclusive. Aim The purpose of this study is to investigate whether sex hormones/their receptors can attenuate altered Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), neuronal Nitric Oxide Synthase (nNOS) expression and nitrergic relaxation in gastric neuromuscular tissues exposed to in-vitro hyperglycemia (HG). Methods Gastric neuromuscular sections from adult female C57BL/6 J mice were incubated in normoglycemic (NG, 5 mM) or hyperglycemic (30 mM or 50 mM) conditions in the presence or absence of selective estrogen receptor (ER) agonists (ERα /PPT or ERβ: DPN); or non-selective sex hormone receptor antagonists (ER/ICI 182,780, or progesterone receptor (PR)/ RU486) for 48 h. mRNA, protein expression and nitrergic relaxation of circular gastric neuromuscular strips were assessed. Results Our findings in HG, compared to NG, demonstrate a significant reduction in ER, Nrf2, and nNOS expression in gastric specimens. In addition, in-vitro treatment with sex hormones and/or their agonists significantly (*p < 0.05) restored Nrf2/nNOSα expression and total nitrite production. Conversely, ER, but not PR, antagonist significantly reduced Nrf2/nNOSα expression and nitrergic relaxation. Conclusions Our data suggest that ER’s can regulate nitrergic function by improving Nrf2/nNOS expression in experimental hyperglycemia.


1999 ◽  
Vol 16 (5) ◽  
pp. 819-834 ◽  
Author(s):  
SHERRY CUTHBERTSON ◽  
YURI S. ZAGVAZDIN ◽  
TOYA D.H. KIMBLE ◽  
WILLIAM J. LAMOREAUX ◽  
BRYAN S. JACKSON ◽  
...  

The avian ciliary ganglion (CG) controls choroidal blood flow by its choroidal neurons, and pupil constriction and accommodation by its ciliary neurons. It was previously reported that both choroidal and ciliary neurons label positively for NADPH diaphorase (NADPHd), a marker for nitric oxide synthase (NOS). To assess if this labeling is preganglionic or postganglionic and to determine if it is attributable to neuronal NOS (nNOS), we studied pigeon CG using NADPHd histochemistry and nNOS immunohistochemistry (IHC). Short-duration staining times by NADPHd histochemistry yielded intense labeling of structures that appeared to be the cap-like endings on ciliary neurons and the boutonal endings on choroidal neurons that arise from the nucleus of Edinger-Westphal (EW), and light or no postganglionic perikaryal staining. The light postganglionic staining that was observed tended to be localized to ciliary neurons. Consistent with this, NADPHd+ nerve fibers were observed in the postganglionic ciliary nerves but rarely in the postganglionic choroidal nerves. These same staining times yielded robust staining of neurons in the orbital pterygopalatine microganglia network, which are known to be nNOS+. Diffuse staining of CG perikarya was observed with longer staining durations, and this staining tended to mask the preganglionic labeling. Preganglionic NADPHd+ staining in CG with short staining times was blocked by the NOS inhibitors iodonium diphenyl (IDP) and dichlorophenol-indophenol (DPIP), but the diffuse postganglionic staining observed with the longer staining times was not completely blocked. Labeling of CG sections for substance P (SP) by IHC (which labels EW-originating preganglionic endings in CG) and subsequently for NADPHd confirmed that NADPHd was localized to preganglionic endings on CG neurons. Immunohistochemical double labeling for nNOS and SP or enkephalin further confirmed that nNOS is found in boutonal and cap-like endings in the CG. Two studies were then carried out to demonstrate that the nNOS+ preganglionic endings in CG arise from EW. First, NADPHd+ and nNOS+ neurons were observed in EW in pigeons treated with colchicine to enhance perikaryal labeling. Second, NADPHd+ and nNOS+ preganglionic endings were eliminated from CG ipsilateral to an EW lesion. These various results indicate that NOS is present in EW-arising preganglionic endings on choroidal and ciliary neurons in avian CG. NOS also appears to be found in some ciliary neurons, but its presence in choroidal neurons is currently uncertain.


Sign in / Sign up

Export Citation Format

Share Document