Analytic treatment for variable coefficient fourth-order parabolic partial differential equations

2001 ◽  
Vol 123 (2) ◽  
pp. 219-227 ◽  
Author(s):  
Abdul-Majid Wazwaz
2009 ◽  
Vol 64 (7-8) ◽  
pp. 420-430 ◽  
Author(s):  
Mehdi Dehghan ◽  
Jalil Manafian

AbstractIn this work, the homotopy perturbation method proposed by Ji-Huan He [1] is applied to solve both linear and nonlinear boundary value problems for fourth-order partial differential equations. The numerical results obtained with minimum amount of computation are compared with the exact solution to show the efficiency of the method. The results show that the homotopy perturbation method is of high accuracy and efficient for solving the fourth-order parabolic partial differential equation with variable coefficients. The results show also that the introduced method is a powerful tool for solving the fourth-order parabolic partial differential equations.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Ben Muatjetjeja ◽  
Chaudry Masood Khalique

We construct the conservation laws for a variable coefficient variant Boussinesq system, which is a third-order system of two partial differential equations. This system does not have a Lagrangian and so we transform it to a system of fourth-order, which admits a Lagrangian. Noether’s approach is then utilized to obtain the conservation laws. Lastly, the conservation laws are presented in terms of the original variables. Infinite numbers of both local and nonlocal conserved quantities are derived for the underlying system.


Sign in / Sign up

Export Citation Format

Share Document