05/01672 Aerodynamic performance prediction of a 30 kW counter-rotating wind turbine system

2005 ◽  
Vol 46 (4) ◽  
pp. 247
2021 ◽  
Vol 2083 (4) ◽  
pp. 042005
Author(s):  
Xueyi Liu ◽  
Junhao Dong ◽  
Guangyu Tu

Abstract Fan, as the most commonly used mechanical equipment, is widely used. In order to solve the problem of fan bearing fault diagnosis, this paper analyzes the main factors affecting fan spindle speed and power generation in operation. The input and output parameters of the performance prediction model are determined. The performance prediction model of wind turbine is established by using generalized regression neural network, and the smoothing factor of GRNN is optimized by comparing the prediction accuracy of the model. Based on this model, the sliding data window method is used to calculate the residual evaluation index of wind turbine speed and power in real time. When the evaluation index continuously exceeds the pre-set threshold, the abnormal state of wind turbine can be judged. In order to obtain wind turbine blades with better aerodynamic performance, a blade aerodynamic performance optimization method based on quantum heredity is proposed. The B é zier curve control point is used as the design variable to represent the continuous chord length and torsion angle distribution of the blade, the blade shape optimization model aiming at the maximum power is established, and the quantum genetic algorithm is used to optimize the chord length and torsion angle of the blade under different constraints. The optimization results of quantum genetic algorithm and classical genetic algorithm are compared and analyzed. Under the same parameters and boundary conditions, the proposed blade aerodynamic optimization method based on quantum genetic optimization is better than the classical genetic optimization method, and can obtain better blade aerodynamic shape and higher wind energy capture efficiency. This method makes up for the shortcomings of traditional fault diagnosis methods, improves the recognition rate of fault types and the accuracy of fault diagnosis, and the diagnosis effect is good.


2014 ◽  
Vol 660 ◽  
pp. 689-693 ◽  
Author(s):  
Mohd Sofian ◽  
Rosly Nurhayati ◽  
A.Jamit Rexca ◽  
S. Shamsudin Syariful ◽  
Abdullah Aslam

This study presents a simulation result of an evaluation of the aerodynamic performance of a moving car with a wind turbine system. Sedan type cars (approaching the size of Proton Wira car) were modeled using the SolidWork software and simulation was done by ANSYS FLUENT software. Three car models with different wind turbine system positions (in front of the front bumper, on top of the hood and on top of the roof) plus one model without the wind turbine system were simulated. The study proved that the position of the wind turbine system installation will change the characteristic of the air flow around the car body and affects the aerodynamic performance of the car. Extended front bumper of a car is not significantly affecting the aerodynamic performance of the car. This extended bumper seems to be the suitable area to install a wind turbine system and the investigation shows that the aerodynamic performance of the car improved due to lower drag coefficient, Cd..


Sign in / Sign up

Export Citation Format

Share Document