wake effect
Recently Published Documents


TOTAL DOCUMENTS

261
(FIVE YEARS 90)

H-INDEX

19
(FIVE YEARS 4)

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8313
Author(s):  
Xin Liu ◽  
Lailong Li ◽  
Shaoping Shi ◽  
Xinming Chen ◽  
Songhua Wu ◽  
...  

Huaneng Rudong 300 MW offshore wind farm project is located in eastern China. The wake effect is one of the major concerns for wind farm operators, as all 70 units are plotted in ranks, and the sea surface roughness is low. This paper investigated the wake intensity by combining a field test and a numerical simulation. To carry out further yaw optimization, a Gaussian wake model was adopted. Firstly, a 3D Light Detection and Ranging device (LiDAR) was used to capture the features in both horizontal and vertical directions of the wake. It indicated that Gaussian wake model can precisely predict the characteristics under time average and steady state in the wind farm. The predicted annual energy production (AEP) of the whole wind farm by the Gaussian model is compared with the calculation result of the actuator line (AL)-based LES method, and the difference between the two methods is mostly under 10%.


Author(s):  
Zhiyu Wan ◽  
Dandan Zhang ◽  
Zhenbiao Li ◽  
Shi Mo ◽  
Yu Zhang

Galloping of twin bundled overhead conductors accreted by ice is a frequent phenomenon during freezing weather, which may damage the operation of transmission lines. To analyze the galloping behavior of iced conductors, their aerodynamic characteristics must be studied. In this study, models with two different outlines were designed and tested to determine a more suitable ice-accreted conductor testing model. Subsequently, the influences of the conductor type, ice thickness, wind turbulence intensity, and wake effect of the windward conductor on the aerodynamic coefficients of the conductors with crescent-shape ice are investigated. The results show that the strand outline of overhead conductors must be considered to improve the accuracy of aerodynamic tests. With increasing ice thickness, the aerodynamic stability becomes rapidly deteriorated. Under the wind turbulence intensity of 4%, the aerodynamic stability gets the most enhancement. Moreover, different conductor types have little impact on the aerodynamic coefficients. The wake caused by the windward conductor is the leading cause for the twin bundled iced conductors to have weaker aerodynamic stability than a single conductor. The aerodynamic coefficients determined in this study are essential for predicting the galloping amplitudes of ice-accreted twin bundled overhead conductors under different weather conditions.


Author(s):  
Nofirman Firdaus ◽  
Bambang Teguh Prasetyo ◽  
Hasnida Ab-Samat ◽  
Prayudi ◽  
Hendri ◽  
...  

Indonesia has an abundant renewable energy source. One of them is wind energy resources. Unfortunately, Indonesia's wind energy resource is not fully utilized, especially for application in high-rise buildings. The paper investigates the potential of energy production from the horizontal-axis wind turbine (HAWT) and the vertical-axis wind turbine (VAWT) on the rooftop of a university building in Indonesia. The wind speed data were measured on the rooftop of the building for seven months. The data was analyzed using Weibull distribution. Based on the probability density function of the Weibull distribution, the potential energy production was calculated using the power curves from the manufacturer. Comparing energy production between HAWTs and VAWTs has shown that VAWTs can produce more energy than HAWTs. Using six turbines, VAWTs can produce 48,476 kWh. On the other hand, with four turbines, HAWTs can produce 41,729 kWh. The reason is that VAWT requires shorter distance requirements for inter-turbine and between rows. Therefore, VAWT can use more turbines than HAWT in the limited area. In conclusion, VAWT for high-rise buildings is more preferred because VAWT can generate more energy. Further study should investigate the optimal configuration with varying the wind direction and quantifying the wake effect on power output.


2021 ◽  
Vol 116 ◽  
pp. 104925
Author(s):  
Kaixuan Chen ◽  
Jin Lin ◽  
Yiwei Qiu ◽  
Feng Liu ◽  
Yonghua Song

2021 ◽  
Author(s):  
Yu Shen ◽  
Tannan Xiao ◽  
Qifeng Lv ◽  
Xuemin Zhang ◽  
Yangfan Zhang ◽  
...  

2021 ◽  
Author(s):  
Jana Fischereit ◽  
Kurt Schaldemose Hansen ◽  
Xiaoli Guo Larsén ◽  
Maarten Paul van der Laan ◽  
Pierre-Elouan Réthoré ◽  
...  

Abstract. Numerical wind resource modelling across scales from mesoscale to turbine scale is of increasing interest due to the expansion of offshore wind energy. Offshore, wind farm wakes can last several tens kilometres downstream and thus affect the wind resources of a large area. So far, scale-specific models have been developed and it remains unclear, how well the different model types can represent intra-farm wakes, farm-to-farm wakes as well as the wake recovery behind a farm. Thus, in the present analysis the simulation of a set of wind farm models of different complexity, fidelity, scale and computational costs are compared among each other and with SCADA data. In particular, two mesoscale wind farm parameterizations implemented in the mesoscale Weather Research and Forecasting model (WRF), the Explicit Wake Parameterization (EWP) and the Wind Farm Parameterization (FIT), two different high-resolution RANS simulations using PyWakeEllipSys equipped with an actuator disk model, and three rapid engineering wake models from the PyWake suite are selected. The models are applied to the Nysted and Rødsand II wind farms, which are located in the Fehmarn Belt in the Baltic Sea. Based on the performed simulations, we can conclude that average intra-farm variability can be captured reasonable well with WRF+FIT using a resolution of 2 km, a typical resolution of mesoscale models for wind energy applications, while WRF+EWP underestimates wind speed deficits. However, both parameterizations can be used to estimate median wind resource reduction caused by an upstream farm. All considered engineering wake models from the PyWake suite simulate intra-farm wakes comparable to the high fidelity RANS simulations. However, they considerably underestimate the farm wake effect of an upstream farm although with different magnitudes. Overall, the higher computational costs of PyWakeEllipSys and WRF compared to PyWake pay off in terms of accuracy for situations when farm-to-farm wakes are important.


2021 ◽  
Vol 11 (20) ◽  
pp. 9746
Author(s):  
Menova Yeghikian ◽  
Abolfazl Ahmadi ◽  
Reza Dashti ◽  
Farbod Esmaeilion ◽  
Alireza Mahmoudan ◽  
...  

Nowadays, optimizing wind farm configurations is one of the biggest concerns for energy communities. The ongoing investigations have so far helped increasing power generation and reducing corresponding costs. The primary objective of this study is to optimize a wind farm layout in Manjil, Iran. The optimization procedure aims to find the optimal arrangement of this wind farm and the best values for the hubs of its wind turbines. By considering wind regimes and geographic data of the considered area, and using the Jensen’s method, the wind turbine wake effect of the proposed configuration is simulated. The objective function in the optimization problem is set in such a way to find the optimal arrangement of the wind turbines as well as electricity generation costs, based on the Mossetti cost function, by implementing the particle swarm optimization (PSO) algorithm. The results reveal that optimizing the given wind farm leads to a 10.75% increase in power generation capacity and a 9.42% reduction in its corresponding cost.


Sign in / Sign up

Export Citation Format

Share Document