An Evaluation of Drag Coefficient of Wind Turbine System Installed on Moving Car

2014 ◽  
Vol 660 ◽  
pp. 689-693 ◽  
Author(s):  
Mohd Sofian ◽  
Rosly Nurhayati ◽  
A.Jamit Rexca ◽  
S. Shamsudin Syariful ◽  
Abdullah Aslam

This study presents a simulation result of an evaluation of the aerodynamic performance of a moving car with a wind turbine system. Sedan type cars (approaching the size of Proton Wira car) were modeled using the SolidWork software and simulation was done by ANSYS FLUENT software. Three car models with different wind turbine system positions (in front of the front bumper, on top of the hood and on top of the roof) plus one model without the wind turbine system were simulated. The study proved that the position of the wind turbine system installation will change the characteristic of the air flow around the car body and affects the aerodynamic performance of the car. Extended front bumper of a car is not significantly affecting the aerodynamic performance of the car. This extended bumper seems to be the suitable area to install a wind turbine system and the investigation shows that the aerodynamic performance of the car improved due to lower drag coefficient, Cd..

2019 ◽  
Vol 11 (11) ◽  
pp. 168781401989211
Author(s):  
Deyaa Nabil Elshebiny ◽  
Ali AbdelFattah Hashem ◽  
Farouk Mohammed Owis

This article introduces novel blade tip geometric modification to improve the aerodynamic performance of horizontal-axis wind turbine by adding auxiliary cascading blades toward the tip region. This study focuses on the new turbine shape and how it enhances the turbine performance in comparison with the classical turbine. This study is performed numerically for National Renewable Energy Laboratory Phase II (non-optimized wind turbine) taking into consideration the effect of adding different cascade configurations on the turbine performance using ANSYS FLUENT program. The analysis of single-auxiliary and double-auxiliary cascade blades has shown an impact on increasing the turbine power of 28% and 76%, respectively, at 72 r/min and 12.85 m/s of wind speed. Knowing that the performance of cascaded wind turbine depends on the geometry, solidity and operating conditions of the original blade; therefore, these results are not authorized for other cases.


2019 ◽  
Vol 196 ◽  
pp. 00036
Author(s):  
Svetlana V. Pogudalina ◽  
Natalya N. Fedorova ◽  
Svetlana A. Valger

In this paper, the results of a numerical simulation of the air flow in the vicinity of a parallelepiped fixed on a plate are presented. The 3D calculations were performed with the ANSYS Fluent software using scale-resolving DES approach. The obtained results are compared with the experimental data and with the results of the previous numerical calculation.


This article predominantly focuses on the performance estimation of a small wind turbine blade when a dimple arrangement is made along its upper surface. The dimple arrangement is grooved at two locations: 0.25c and 0.5c, where c is the chord length of the turbine blade. A CFD analysis using the k-ε turbulence model is carried out on the selected blade sections NREL S823 and S822. The continuity and momentum equations are solved using ANSYS Fluent Solver to assess the aerodynamic performance of the proposed design. The effect of introducing a dimple on the blade surface has shown to delay the flow separation, with the formation of vortices. Further, the overall performance of the blade is simulated using GH BLADED and the results acquired are discussed.


2018 ◽  
Vol 8 (4) ◽  
pp. 3282-3286
Author(s):  
I. Malael ◽  
V. Dragan

This paper investigates the concept of a concentric counter-rotating vertical axis wind turbine (VAWT), consisting of a two stage vertical H-type turbine with three blades on each stage. The model has an inner and an outer stage, rotating in opposition to each other. Both numerical and experimental tests have been performed in order to validate this new concept. Numerical analysis is based on the use of 2.5-dimensional, unsteady simulations using a DOF type of analysis which allows for the two stages to self-adjust their rotation speed. Sliding mesh conformal interfaces are defined between these subdomains to minimize numerical artifacts such as artificial relations or entropy changes. Fully turbulent URANS were carried out in Ansys Fluent software. One key outcome was the momentum coefficient for each stage at different tip wind speed values. Another, more qualitative, outcome is the analysis of vortex shedding, impingement and overall interaction between the stages at different positions and scenarios. Ultimately, the numerical results have been validated using a scaled experimental device which was analyzed in the wind tunnel at different free stream speeds.


Author(s):  
Yuntian Ge ◽  
Xiuling Wang

Wind turbines rotation was motivated by the force of wind. In reality, wind doesn’t moving vertically to the wind turbine rotation plane, but in random directions instead. Therefore, the yawed effect has to be taken into consideration when study wind turbine aerodynamic performance. The purpose of this study is to compare the difference between the wind turbine near wake flow with yawed effect and without yawed effect aerodynamically. The research uses CFD technology to simulate the rotation movement and air flow pattern, which is completed in software Ansys Workbench.


2019 ◽  
Vol 85 ◽  
pp. 03001
Author(s):  
Florina Costea ◽  
Ion Malael

In the current age of global energy crisis, a run for the use of renewable energy resources as the wind energy has gained a significant attention. The main objective of this study is the comparison between two wind turbine configurations. These two turbines have the same geometric parameters but one with a 4 digits NACA0018 blades and the other with 5 digits NACA63-415 blades. In this scientific paper, a numerical evaluation of the airfoil shape influence on the VAWT efficiency is done. For this study the CFD methods with Ansys Fluent software, are used. All the simulations are for unsteady flow at 1e06 Reynolds number value with SST turbulence model. At the design point the wind velocity is 12 m/s and for the wind turbine geometric features, the diameter is 3.25m and the height 4.87m. The power coefficient variation through tip speed ratio will be represented for each wind turbine configurations. To estimate the recirculation zone effects on the efficiency, the vorticity magnitude contours are presented for different positions of the blades. The results will indicate the feasibility of optimization of future wind turbine more complex airfoils.


2020 ◽  
Vol 10 (2) ◽  
pp. 73-84
Author(s):  
Mahmoud Saleh ◽  
Endre Kovács

Nowadays the importance of renewable energy is growing, and the utilization of the low wind energy potential is getting crucial. There are turbines with low and high tip speed ratio. Turbines with low tip speed ratio such as the Savonius wind turbine can generate adequate amount of torque at low wind velocities. These types of turbines are also called drag machines. The geometry of the blade can greatly influence the efficiency of the device. With Computational Fluid Dynamics (CFD) method, several optimizations can be done before the production. In our paper the Savonius wind turbine blade geometry was designed based on the so-called Myring equation. The primary objective of this paper was to investigate the drag coefficient of the force acting on the surface of the blade. Also, the Karman vortex was investigated and the space ratio of that vortex in our simulation was compared to a typical one. The power coefficient of a new Savonius turbine was investigated at different values of top speed ratio (TSR). For the sake of simplicity, a 2D cross-sectional area was investigated in the simulation with ANSYS Fluent 19.2.


Sign in / Sign up

Export Citation Format

Share Document