In vitro selection of high affinity anti-retinal antigens (S-antigen, IRBP, rhodopsin) antibodies from a combinatorial phage display library derived from a patient with autoimmune uveitis

1997 ◽  
Vol 56 (1-3) ◽  
pp. 377
Author(s):  
S O'Brien
1996 ◽  
Vol 2 (3) ◽  
pp. 209-217 ◽  
Author(s):  
Anthony Pope ◽  
Kevin Pritchard ◽  
Andrew Williams ◽  
Andrew Roberts ◽  
John R. Hackett ◽  
...  

Gene ◽  
2002 ◽  
Vol 283 (1-2) ◽  
pp. 63-69 ◽  
Author(s):  
Isabel Delany ◽  
Gunther Spohn ◽  
Rino Rappuoli ◽  
Vincenzo Scarlato

2003 ◽  
Vol 33 (12) ◽  
pp. 1309-1317 ◽  
Author(s):  
H.Ulrich Göringer ◽  
Matthias Homann ◽  
Mihaela Lorger

2012 ◽  
Vol 59 (3) ◽  
Author(s):  
Anna Cyranka-Czaja ◽  
Jacek Otlewski

Specific, high affinity binding macromolecules are of great importance for biomedical and biotechnological applications. The most popular classical antibody-based molecules have recently been challenged by alternative scaffolds with desirable biophysical properties. Phage display technology applied to such scaffolds allows generation of potent affinity reagents by in vitro selection. Here, we report identification and characterization of a novel helical polypeptide with advantageous biophysical properties as a template for construction of phage display libraries. A three-helix bundle structure, based on Measles virus phosphoprotein P shows a very favourable stability and solubility profile. We designed, constructed and characterized six different types of phage display libraries based on the proposed template. Their functional size of over 10(9) independent clones, balanced codon bias and decent display level are key parameters attesting to the quality and utility of the libraries. The new libraries are a promising tool for isolation of high affinity binders based on a small helical scaffold which could become a convenient alternative to antibodies.


Sign in / Sign up

Export Citation Format

Share Document