nucleic acid
Recently Published Documents





2022 ◽  
Vol 456 ◽  
pp. 214379
Fang Pu ◽  
Jinsong Ren ◽  
Xiaogang Qu

2022 ◽  
Vol 147 ◽  
pp. 112622
Xiao Li ◽  
Xinyuan Sun ◽  
Xuemin Guo ◽  
Xueren Li ◽  
Shouchun Peng ◽  

2022 ◽  
Vol 26 (1) ◽  
pp. 100966
Nantao Li ◽  
Bin Zhao ◽  
Robert Stavins ◽  
Ana Sol Peinetti ◽  
Neha Chauhan ◽  

2022 ◽  
LK Metthew Lam ◽  
Jane Dobkin ◽  
Kaitlyn A. Eckart ◽  
Ian Gereg ◽  
Andrew DiSalvo ◽  

Red blood cells (RBCs) demonstrate immunomodulatory capabilities through the expression of nucleic acid sensors. Little is known about bat RBCs, and no studies have examined the immune function of bat erythrocytes. Here we show that bat RBCs express the nucleic acid-sensing Toll-like receptors TLR7 and TLR9 and bind the nucleic acid ligands, single-stranded RNA, and CpG DNA. Collectively, these data suggest that, like human RBCs, bat erythrocytes possess immune function and may be reservoirs for nucleic acids. These findings provide unique insight into bat immunity and may uncover potential mechanisms by which virulent pathogens in humans are concealed in bats.

2022 ◽  
Vol 8 ◽  
Xiaohua Liang ◽  
Yajun Sun ◽  
Lun Xiao ◽  
YanLing Ren ◽  
Xian Tang

ObjectiveThe purpose of this study is to analyze the positive rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid testing (NAT), cases of and deaths due to SARS-CoV-2, and the epidemiological characteristics of SARS-CoV-2 to identify high-risk populations.MethodsA retrospective study in Jiulongpo district of Chongqing was conducted by performing continuous observations of the frequency of SARS-CoV-2 NAT, analyzing the data of close contacts of patients and asymptomatic carriers, and collecting epidemiological data. Data were collected from January 20, 2020, when the first case of SARS-CoV-2 infection was reported, to March 26, 2020. Descriptive statistical analysis and Cochrane–Mantel–Haenszel analysis were used to compare the positive detection rates and positive diagnostic rates of different exposure groups.ResultsA total of 7,118 people received 10,377 SARS-CoV-2 nucleic acid tests in one district, and the SARS-CoV-2 positive rates were 0.40% (18/4446) and 0.15% (4/2672) in people receiving one and ≥ two nucleic acid tests (p = 0.06), respectively. Those with suspected cases (12.35%) and close contacts (8%) had higher positive rates than people tested at fever clinics (0.39%) (p < 0.001). The median latency (range) of cases was 5 (2, 9) days, and the median time from diagnosis to recovery was 22 (14, 25) days. One recovered patient received a positive test result at 28 days after recovery when she attempted to donate blood. Six clustered cases, including one patient who died, indicated persistent human-to-human transmission. One patient who was diagnosed after death was found to have infected 13 close contacts. People working in catering and other public service departments (36.36%) and people who are unemployed and retirees (45.45%) have an increased risk of infection compared with technical staff (9.09%) and farmers (9.09%).ConclusionThe total positive rate was low in the tested population, and more effective detection ranges should be defined to improve precise and differentiated epidemic control strategies. Moreover, in asymptomatic carriers, SARS-CoV-2 tests were positive after recovery, and patients with suspected SARS-CoV-2 infection who die may pose serious potential transmission threats.

2022 ◽  
Vol 22 (1) ◽  
Phillip P. Salvatore ◽  
Melisa M. Shah ◽  
Laura Ford ◽  
Augustina Delaney ◽  
Christopher H. Hsu ◽  

Abstract Background Antigen tests for SARS-CoV-2 offer advantages over nucleic acid amplification tests (NAATs, such as RT-PCR), including lower cost and rapid return of results, but show reduced sensitivity. Public health organizations recommend different strategies for utilizing NAATs and antigen tests. We sought to create a framework for the quantitative comparison of these recommended strategies based on their expected performance. Methods We utilized a decision analysis approach to simulate the expected outcomes of six testing algorithms analogous to strategies recommended by public health organizations. Each algorithm was simulated 50,000 times in a population of 100,000 persons seeking testing. Primary outcomes were number of missed cases, number of false-positive diagnoses, and total test volumes. Outcome medians and 95% uncertainty ranges (URs) were reported. Results Algorithms that use NAATs to confirm all negative antigen results minimized missed cases but required high NAAT capacity: 92,200 (95% UR: 91,200-93,200) tests (in addition to 100,000 antigen tests) at 10% prevalence. Selective use of NAATs to confirm antigen results when discordant with symptom status (e.g., symptomatic persons with negative antigen results) resulted in the most efficient use of NAATs, with 25 NAATs (95% UR: 13-57) needed to detect one additional case compared to exclusive use of antigen tests. Conclusions No single SARS-CoV-2 testing algorithm is likely to be optimal across settings with different levels of prevalence and for all programmatic priorities. This analysis provides a framework for selecting setting-specific strategies to achieve acceptable balances and trade-offs between programmatic priorities and resource constraints.

Karrie K. K. Ko ◽  
Nurdyana Binte Abdul Rahman ◽  
Shireen Yan Ling Tan ◽  
Kenneth X. L. Chan ◽  
Sui Sin Goh ◽  

Accurate diagnostic detection of SARS-CoV-2 currently depends on the large-scale deployment of RT-PCR assays. SARS-CoV-2 RT-PCR assays target predetermined regions in the viral genomes by complementary binding of primers and probes to nucleic acid sequences in the clinical samples.

Sign in / Sign up

Export Citation Format

Share Document