Formation of carbonaceous compounds from propene and isobutene over 5A zeolite adsorbents

Author(s):  
P. Magnoux ◽  
Y. Boucheffa ◽  
G. Joly ◽  
M. Guisnet ◽  
S. Jullian
Keyword(s):  
2013 ◽  
Vol 634-638 ◽  
pp. 731-735 ◽  
Author(s):  
Lu Shi ◽  
Zong Jian Liu ◽  
Qun Cui ◽  
Hai Yan Wang ◽  
Hu Qing Yao

Desorption rate curves of n-pentane on 5A zeolites at 418 K and 10-0.03 kPa were determined, and the effects of different macropore structure on desorption performance were analyzed. Results show that macropore distribution of 5A-1 concentrates in 0.25-1.25 μm, while that of 5A-2 ranges from mesopore category to 0.3 μm, but 5A-3 contains both pores of 0.01-0.1 μm and 0.2-2 μm inside, reflecting a broadest distribution; 5A-3, 5A-1 and 5A-2 reach desorption equilibrium after 1100 s, 1400 s and 2000 s respectively at 0.03 kPa, indicating that abundant macropores make n-pentane fastest desorbed from 5A-3, but this advantage gradually disappears with the increasing pressure; the effective desorption diffusion coefficients of n-pentane on 5A-1, 5A-2 and 5A-3 are 4.2×10-15-2.2×10-14 m2/s, 2.0×10-15-2.3×10-14 m2/s, 7.4×10-15-2.4×10-14 m2/s respectively, suggesting that plenty macropores make the diffusivity less affected by the changes of pressure, which can guarantee a fast diffusion rate of n-pentane even at low pressure.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 486-493
Author(s):  
Ting Liang ◽  
Biao Wang ◽  
Zhenzhong Fan ◽  
Qingwang Liu

Abstract A facile method for fabricating superhydrophobic and superoleophilic powder with 5A zeolite and stearic acid (SA) is reported in this study. The effect of different contents of SA on contact angle (CA) was investigated. The maximum water CA was 156.2°, corresponding to the optimum SA content of 1.5 wt%. The effects of SA and the mechanism of modified 5A zeolite powder by SA were analyzed by sedimentation analysis experiment, FTIR analysis, particle size analysis, and SEM characterization. The SA-modified 5A zeolite was used as an oil sorbent to separate oil–water mixture with potential use in floating oil. The separation efficiency was above 98%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Akhil Arora ◽  
M. M. Faruque Hasan

AbstractMedical oxygen concentrators (MOCs) are used for supplying medical grade oxygen to prevent hypoxemia-related complications related to COVID-19, chronic obstructive pulmonary disease (COPD), chronic bronchitis and pneumonia. MOCs often use a technology called pressure swing adsorption (PSA), which relies on nitrogen-selective adsorbents for producing oxygen from ambient air. MOCs are often designed for fixed product specifications, thereby limiting their use in meeting varying product specifications caused by a change in patient’s medical condition or activity. To address this limitation, we design and optimize flexible single-bed MOC systems that are capable of meeting varying product specification requirements. Specifically, we employ a simulation-based optimization framework for optimizing flexible PSA- and pressure vacuum swing adsorption (PVSA)-based MOC systems. Detailed optimization studies are performed to benchmark the performance limits of LiX, LiLSX and 5A zeolite adsorbents. The results indicate that LiLSX outperforms both LiX and 5A, and can produce 90% pure oxygen at 21.7 L/min. Moreover, the LiLSX-based flexible PVSA system can manufacture varying levels of oxygen purity and flow rate in the range 93–95.7% and 1–15 L/min, respectively. The flexible MOC technology paves way for transitioning to an envisioned cyber-physical system with real-time oxygen demand sensing and delivery for improved patient care.


2017 ◽  
Vol 62 (4) ◽  
pp. 1550-1557 ◽  
Author(s):  
Leonel Garcı́a ◽  
Yuly A. Poveda ◽  
Mohammadali Khadivi ◽  
Gerardo Rodríguez ◽  
Oliver Görke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document