fast diffusion
Recently Published Documents


TOTAL DOCUMENTS

653
(FIVE YEARS 150)

H-INDEX

38
(FIVE YEARS 7)

2022 ◽  
Vol 48 (1) ◽  
Author(s):  
Marcello Lanari ◽  
Elisabetta Venturini ◽  
Luca Pierantoni ◽  
Giacomo Stera ◽  
Guido Castelli Gattinara ◽  
...  

AbstractThe fast diffusion of the SARS-CoV-2 pandemic have called for an equally rapid evolution of the therapeutic options.The Human recombinant monoclonal antibodies (mAbs) have recently been approved by the Food and Drug Administration (FDA) and by the Italian Medicines Agency (AIFA) in subjects aged ≥12 with SARS-CoV-2 infection and specific risk factors.Currently the indications are specific for the use of two different mAbs combination: Bamlanivimab+Etesevimab (produced by Eli Lilly) and Casirivimab+Imdevimab (produced by Regeneron).These drugs have shown favorable effects in adult patients in the initial phase of infection, whereas to date few data are available on their use in children.AIFA criteria derived from the existing literature which reports an increased risk of severe COVID-19 in children with comorbidities. However, the studies analyzing the determinants for progression to severe disease are mainly monocentric, with limited numbers and reporting mostly generic risk categories.Thus, the Italian Society of Pediatrics invited its affiliated Scientific Societies to produce a Consensus document based on the revision of the criteria proposed by AIFA in light of the most recent literature and experts’ agreement.This Consensus tries to detail which patients actually have the risk to develop severe disease, analyzing the most common comorbidities in children, in order to detail the indications for mAbs administration and to guide the clinicians in identifying eligible patients.


Author(s):  
Xian Yuan ◽  
Zhongyong Zhang ◽  
Yuping He ◽  
Shangquan Zhao ◽  
Naigen Zhou

2021 ◽  
Author(s):  
Jacopo Perego ◽  
Charl Bezuidenhout ◽  
Irene Villa ◽  
Francesca Cova ◽  
Roberta Crapanzano ◽  
...  

A high efficiency emission with a massive Stokes shift is obtained by fluorescent conjugated acene building blocks arranged in nanocrystals. The two ligands of equal molecular length and connectivity, yet complementary electronic properties, are co-assembled by zirconium oxy-hydroxy clusters, generating highly crystalline hetero-MOF nanoparticles The fast diffusion of singlet molecular excitons in the framework, coupled with the fine matching of ligands absorption and emission properties, enables to achieve an ultrafast activation of the low energy emission by diffusion-mediated non-radiative energy transfer in the 100 ps time scale, by using a low amount of co-ligands. This allow to obtain MOF nanocrystals with a fluorescence quantum efficiency of ̴ 70% and an actual Stokes shift as large as 750 meV. This large Stokes shift suppresses the reabsorption of fast emission issues in bulk devices, pivotal for a plethora of applications in photonics and photon managing spacing from solar technologies, imaging, and detection of high energy radiation. These features allowed to realize a prototypal fast nanocomposite scintillator that shows an enhanced performance with respect to the homo-ligand nanocrystals, achieving benchmark. values which compete with those of some inorganic and organic commercial systems.


2021 ◽  
Vol 2131 (3) ◽  
pp. 032042
Author(s):  
M M Aripov ◽  
R B Baltabaeva

Abstract In this paper we investigated the qualitative properties of non-negative and bounded continuous solutions to problem Cauchy for a degenerate parabolic equation with nonlinear gradient term. We based on splitting algorithm suggest estimate of weak solution for slowly, fast diffusion and critical cases, Fujita type global solvability of the Cauchy problem to degenerate type parabolic equation with nonlinear gradient term established. The theorems proven with comparison principle.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7040
Author(s):  
Catalin Palade ◽  
Ana-Maria Lepadatu ◽  
Adrian Slav ◽  
Valentin Serban Teodorescu ◽  
Toma Stoica ◽  
...  

Group IV nanocrystals (NCs), in particular from the Si–Ge system, are of high interest for Si photonics applications. Ge-rich SiGe NCs embedded in nanocrystallized HfO2 were obtained by magnetron sputtering deposition followed by rapid thermal annealing at 600 °C for nanostructuring. The complex characterization of morphology and crystalline structure by X-ray diffraction, μ-Raman spectroscopy, and cross-section transmission electron microscopy evidenced the formation of Ge-rich SiGe NCs (3–7 nm diameter) in a matrix of nanocrystallized HfO2. For avoiding the fast diffusion of Ge, the layer containing SiGe NCs was cladded by very thin top and bottom pure HfO2 layers. Nanocrystallized HfO2 with tetragonal/orthorhombic structure was revealed beside the monoclinic phase in both buffer HfO2 and SiGe NCs–HfO2 layers. In the top part, the film is mainly crystallized in the monoclinic phase. High efficiency of the photocurrent was obtained in a broad spectral range of curves of 600–2000 nm at low temperatures. The high-quality SiGe NC/HfO2 matrix interface together with the strain induced in SiGe NCs by nanocrystallization of both HfO2 matrix and SiGe nanoparticles explain the unexpectedly extended photoelectric sensitivity in short-wave infrared up to about 2000 nm that is more than the sensitivity limit for Ge, in spite of the increase of bandgap by well-known quantum confinement effect in SiGe NCs.


Author(s):  
Oliver Bluemel ◽  
Jakob W. Buecheler ◽  
Astrid Hauptmann ◽  
Georg Hoelzl ◽  
Karoline Bechtold-Peters ◽  
...  

Abstract Purpose Scale-down devices (SDD) are designed to simulate large-scale thawing of protein drug substance, but require only a fraction of the material. To evaluate the performance of a new SDD that aims to predict thawing in large-scale 2 L bottles, we characterised 3D temperature profiles and changes in concentration and density in comparison to 125 mL and 2 L bottles. Differences in diffusion between a monoclonal antibody (mAb) and histidine buffer after thawing were examined. Methods Temperature profiles at six distinct positions were recorded with type T thermocouples. Size-exclusion chromatography allowed quantification of mAb and histidine. Polysorbate 80 was quantified using a fluorescent dye assay. In addition, the solution’s density at different locations in bottles and the SDD was identified. Results The temperature profiles in the SDD and the large-scale 2 L bottle during thawing were similar. Significant concentration gradients were detected in the 2 L bottle leading to marked density gradients. The SDD slightly overestimated the dilution in the top region and the maximum concentrations at the bottom. Fast diffusion resulted in rapid equilibration of histidine. Conclusion The innovative SDD allows a realistic characterisation and helps to understand thawing processes of mAb solutions in large-scale 2 L bottles. Only a fraction of material is needed to gain insights into the thawing behaviour that is associated with several possible detrimental limitations.


2021 ◽  
Author(s):  
Jummy Funke David ◽  
Sarafa A. Iyaniwura

Abstract We extended a class of coupled PDE-ODE models for studying the spatial spread of airborne diseases by incorporating human mobility. Human populations are modeled with patches, and a Lagrangian perspective is used to keep track of individuals’ places of residence. The movement of pathogens in the air is modeled with linear diffusion and coupled to the SIR dynamics of each human population through an integral of the density of pathogen around the population patch. In the limit of fast diffusion pathogens, the method of matched asymptotic analysis is used to reduce the coupled PDE-ODE model to a nonlinear system of ODEs for the average density of pathogens in the air. The reduced system of ODEs is used to derive the basic reproduction number and the final size relation for the model. Numerical simulations of the full PDE-ODE model and the reduced system of ODEs are used to assess the impact of human mobility, together with the diffusion of pathogens on the dynamics of the disease. Results from the two models are consistent and show that human mobility significantly affects disease dynamics. In addition, we show that an increase in the diffusion rate of pathogen leads to a smaller epidemic.


Sign in / Sign up

Export Citation Format

Share Document