Modeling and solving the dynamic user equilibrium route and departure time choice problem in network with queues

2002 ◽  
Vol 36 (3) ◽  
pp. 253-273 ◽  
Author(s):  
Hai-Jun Huang ◽  
William H.K. Lam
2021 ◽  
Vol 128 ◽  
pp. 103190
Author(s):  
Renxin Zhong ◽  
Jianhui Xiong ◽  
Yunping Huang ◽  
Nan Zheng ◽  
William H.K. Lam ◽  
...  

Author(s):  
Jiancheng Long ◽  
Hai Yang ◽  
W. Y. Szeto

This paper develops a bottleneck model in which the capacity of the bottleneck is assumed to be stochastic and follow a general distribution that has a positive upper bound. The user equilibrium principle in terms of mean trip cost is adopted to formulate commuters’ departure time choice in the stochastic bottleneck. We find that there exist five possible equilibrium departure patterns, which depend on both commuters’ unit costs of travel time, schedule delay early and late, and the uncertainty of the stochastic capacity of the bottleneck. All possible equilibrium departure patterns are analytically derived. Both the analytical and numerical results show that increasing the uncertainty of the capacity of the bottleneck leads to an increase of commuters’ individual mean trip cost. In addition, both a time-varying toll scheme and a single-step coarse toll scheme are designed within the proposed stochastic bottleneck model. We provide an analytical method to determine the detailed toll-charging schemes for both toll strategies. The numerical results show that the proposed toll schemes can indeed improve the efficiency of the stochastic bottleneck in terms of decreasing mean total social cost, and the time-varying toll scheme is more efficient than the single-step coarse toll scheme. However, as the uncertainty of the capacity of the bottleneck increases, the efficiency of the time-varying toll scheme decreases, whereas the efficiency of the single-step coarse toll scheme fluctuates slightly.


2016 ◽  
Vol 43 (1) ◽  
pp. 1-12 ◽  
Author(s):  
ShuGuang Li

This paper proposes a cell-based multiple vehicle type dynamic user equilibrium model with physical queues. A single-type traffic flow model is extended to a general case with multiple vehicle types that can be partly solved by the time-space discretization method. Then, a network version of the multiple vehicle type cell transmission model is given. An integrated variational inequality (VI) formulation is presented to capture the complex traveler choice behaviors such as route and departure time choices. Furthermore, a genetic algorithm with a flow-swapping method is adopted to solve the VI problem. Two examples are used to evaluate the properties of this formulation. The results show that the model can reflect dynamic phenomena, such as multiple vehicle type speed consistent under congested conditions, queue formation and dissipation and so on. Moreover, the solutions can approximately follow the multiple vehicle type dynamic route and departure time user equilibrium conditions.


Sign in / Sign up

Export Citation Format

Share Document