cell transmission model
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 50)

H-INDEX

23
(FIVE YEARS 2)

Author(s):  
Zeyu Shi ◽  
Yangzhou Chen ◽  
Jingyuan Zhan ◽  
Xiangyu Guo ◽  
Shuke An

To describe the dynamics of traffic flow in the urban link accurately, the waves which generate at intersections are adopted as the influencing factors of traffic flow. Based on the urban traffic waves, a wave-oriented variable cell transmission model (WVCTM) is proposed to illustrate the urban traffic flow. In this model, the average density and length are the state variables. The cells are divided by traffic waves. The upstream cell is the influence area of the waves at the upstream intersection, the downstream cell is the influence area of the waves at the downstream intersection, and the rest is the mediate cell. Consistent with the fundamental diagram and the cell division, the traffic states of urban links are divided into six modes. The variation of modes is explained by hybrid automata. Finally, an experiment is designed to verify the feasibility of WVCTM. The data in the experiment come from the actual scene. Compared with the cell transmission model (CTM) and variable-length CTM (VCTM), WVCTM possesses the valuable performance to predict the traffic states. Likewise, it is rational that WVCTM can correctly illustrate the urban traffic flow.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Facundo Storani ◽  
Roberta Di Pace ◽  
Francesca Bruno ◽  
Chiara Fiori

Abstract Background This paper compares a hybrid traffic flow model with benchmark macroscopic and microscopic models. The proposed hybrid traffic flow model may be applied considering a mixed traffic flow and is based on the combination of the macroscopic cell transmission model and the microscopic cellular automata. Modelled variables The hybrid model is compared against three microscopic models, namely the Krauß model, the intelligent driver model and the cellular automata, and against two macroscopic models, the Cell Transmission Model and the Cell Transmission Model with dispersion, respectively. To this end, three main applications were considered: (i) a link with a signalised junction at the end, (ii) a signalised artery, and (iii) a grid network with signalised junctions. Results The numerical simulations show that the model provides acceptable results. Especially in terms of travel times, it has similar behaviour to the microscopic model. By contrast, it produces lower values of queue propagation than microscopic models (intrinsically dominated by stochastic phenomena), which are closer to the values shown by the enhanced macroscopic cell transmission model and the cell transmission model with dispersion. The validation of the model regards the analysis of the wave propagation at the boundary region.


2021 ◽  
Vol 13 (21) ◽  
pp. 12195
Author(s):  
Xingliang Liu ◽  
Jian Wang ◽  
Tangzhi Liu ◽  
Jin Xu

Emergency eventscan induce serious traffic congestions in a local area which may propagate to the upstream roads, and even the whole network. Until now, the methodology forecasting spatiotemporal boundary propagation of emergency-event-based traffic congestions, with both explicitness and road network availability, has not been found. This study develops a new method for predicting spatiotemporal boundary of the congestion caused by emergency events, which is more applicable and practical than cell transmission model (CTM)-derived methods. This method divides the expressway network into different sections based on their functions and the shockwave direction caused by the emergency events. It characterizes the velocity of the moving congestion boundary based on kinetic wave theory and volume–density relationship. After determining whether the congestion will spread into the network level through an interchange using a new concept, highway node acceptance capacity (HNAC), we can predict the spatiotemporal boundary and corresponding traffic condition within the boundary. The proposed method is tested under four traffic incident cases with corresponding traffic data collected through field observations. We also compare its prediction performances with other methods used in the literature.


Author(s):  
Wei Gao ◽  
Man Liang

Air traffic congestion is caused by the unbalance between increasing traffic demand and saturating capacity. Flight delay not only causes huge economical lost, but also has very negative environmental impact in the whole air transportation system. In order to identify the impact of extended TMA on airport capacity, an airspace capacity assessment method based on augmented cell transmission model was proposed. Firstly, the airspace structure was modeled with points, segments, layers, and cells. Secondly, mixed integer linear programming model was built up with maximum throughput or capacity as the objective function. Finally, genetic algorithm was used to find the optimal result, and the results were validated by comparing with the fast-time simulation results generated by total airspace and airport modeler (TAAM) software. It is found that the proposed method could achieve a relatively accurate result in a much affordable and fast way. The numerical results could be very helpful for air traffic controllers to analyze the dynamic traffic flow entering and exiting TMA, so as to make decisions via reasonable analysis and do planning in advance by referring to the airport capacity.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Christina Ng ◽  
Susilawati Susilawati ◽  
Md Abdus Samad Kamal ◽  
Irene Mei Leng Chew

This paper aims at developing a macroscopic cell-based lane change prediction model in a complex urban environment and integrating it into cell transmission model (CTM) to improve the accuracy of macroscopic traffic state estimation. To achieve these objectives, first, based on the observed traffic data, the binary logistic lane change model is developed to formulate the lane change occurrence. Second, the binary logistic lane change is integrated into CTM by refining CTM formulations on how the vehicles in the cell are moving from one cell to another in a longitudinal manner and how cell occupancy is updated after lane change occurrences. The performance of the proposed model is evaluated by comparing the simulated cell occupancy of the proposed model with cell occupancy of US-101 next generation simulation (NGSIM) data. The results indicated no significant difference between the mean of the cell occupancies of the proposed model and the mean of cell occupancies of actual data with a root-mean-square-error (RMSE) of 0.04. Similar results are found when the proposed model was further tested with I80 highway data. It is suggested that the mean of cell occupancies of I80 highway data was not different from the mean of cell occupancies of the proposed model with 0.074 RMSE (0.3 on average).


2021 ◽  
Vol 63 ◽  
pp. 84-99
Author(s):  
A. S. Maulana ◽  
Sri Redjeki Pudjaprasetya

The cell transmission model (CTM) is a macroscopic model that describes the dynamics of traffic flow over time and space. The effectiveness and accuracy of the CTM are discussed in this paper. First, the CTM formula is recognized as a finite-volume discretization of the kinematic traffic model with a trapezoidal flux function. To validate the constructed scheme, the simulation of shock waves and rarefaction waves as two important elements of traffic dynamics was performed. Adaptation of the CTM for intersecting and splitting cells is discussed. Its implementation on the road segment with traffic influx produces results that are consistent with the analytical solution of the kinematic model. Furthermore, a simulation on a simple road network shows the back and forth propagation of shock waves and rarefaction waves. Our numerical result agrees well with the existing result of Godunov’s finite-volume scheme. In addition, from this accurately proven scheme, we can extract information for the average travel time on a certain route, which is the most important information a traveller needs. It appears from simulations of different scenarios that, depending on the circumstances, a longer route may have a shorter travel time. Finally, there is a discussion on the possible application for traffic management in Indonesia during the Eid al-Fitr exodus.   doi:10.1017/S1446181121000080


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yu Sun ◽  
Binglei Xie ◽  
Shan Wang ◽  
Dazhuang Wu

The road network maintaining stability is critical for guaranteeing urban traffic function. Therefore, the vulnerable links need to be identified accurately. Previous vulnerability research under static condition compared the operating states of the old equilibrium before the event and the new equilibrium after the event to assess vulnerability ignoring the dynamic variation process. Does road network vulnerability change over time? This paper combines the vulnerability assessment with the traffic flow evolution process, exploring the road network vulnerability evaluation from the perspective of time dimension. More accurate identification and evaluation of vulnerable nodes and links can help to strengthen the ability of road network resisting disturbances. A modified dynamic traffic assignment (DTA) model is established for dynamic path selection (reselect the shortest path at the end of each link) based on the dynamic user optimal (DUO) principle. A modified cell transmission model is established to simulate the traffic flow evolution processes. The cumulative and time-varying index of vulnerability assessment is established from the viewpoint of traveler’s time loss. Then the road network vulnerability assessment combined the traffic flow model with the vulnerability index. The road network vulnerability assessment of Bao’an Central District of Shenzhen, China, reveals that road network vulnerability does contain a dynamic process, and vulnerable links in each phase can be exactly identified by the model. Results showed that the road network would have a large vulnerability during the disordered phase when the main road fails. Therefore, prioritizing the smooth flow of main roads can weaken the impact of road network vulnerability exposure.


Sign in / Sign up

Export Citation Format

Share Document