Hyperbaric oxygen decreases intercellular adhesion molecule-1 mRNA expression in an in vitro model of ischemia/reperfusion

1999 ◽  
Vol 34 (4) ◽  
pp. S3
Author(s):  
JA Buras ◽  
SP Colgan ◽  
GL Stahl ◽  
WR Reenstra
Blood ◽  
1991 ◽  
Vol 78 (8) ◽  
pp. 2089-2097 ◽  
Author(s):  
MB Furie ◽  
MC Tancinco ◽  
CW Smith

Abstract Intercellular adhesion molecule-1 (ICAM-1) is present on the endothelium and binds to one or more members of the CD11/CD18 family of leukocyte surface integrins. To assess the role of these molecules in mediating chemotaxis of neutrophils across the endothelium, an in vitro model consisting of monolayers of human umbilical vein endothelial cells (HUVEC) grown on amniotic connective tissue was used. Neutrophils placed on the apical sides of these cultures migrated across the endothelium in response to chemoattractants added basally. Monoclonal antibodies (MoAbs) to CD11a, CD11b, and CD18 on the neutrophils inhibited this migration by 52% +/- 11%, 29% +/- 19%, and 90% +/- 7%, respectively. An MoAb to ICAM-1 inhibited transendothelial chemotaxis of the leukocytes by 55% +/- 16%. Inhibition was mediated by binding of the MoAb to ICAM-1 on the HUVEC, rather than by any direct effect of the antibody on the neutrophils. When used in combination, MoAbs to CD11a and to CD11b inhibited migration in a nearly additive fashion. A similar additive effect was observed when MoAbs to CD11b and to ICAM-1 were used together. In contrast, MoAbs to CD11a and to ICAM-1 produced no more inhibition when used in combination than when added singly. These results show that ICAM-1, CD11a/CD18, and CD11b/CD18 all participate in controlling migration of neutrophils across endothelial monolayers in response to chemotactic agents.


Blood ◽  
1991 ◽  
Vol 78 (8) ◽  
pp. 2089-2097 ◽  
Author(s):  
MB Furie ◽  
MC Tancinco ◽  
CW Smith

Intercellular adhesion molecule-1 (ICAM-1) is present on the endothelium and binds to one or more members of the CD11/CD18 family of leukocyte surface integrins. To assess the role of these molecules in mediating chemotaxis of neutrophils across the endothelium, an in vitro model consisting of monolayers of human umbilical vein endothelial cells (HUVEC) grown on amniotic connective tissue was used. Neutrophils placed on the apical sides of these cultures migrated across the endothelium in response to chemoattractants added basally. Monoclonal antibodies (MoAbs) to CD11a, CD11b, and CD18 on the neutrophils inhibited this migration by 52% +/- 11%, 29% +/- 19%, and 90% +/- 7%, respectively. An MoAb to ICAM-1 inhibited transendothelial chemotaxis of the leukocytes by 55% +/- 16%. Inhibition was mediated by binding of the MoAb to ICAM-1 on the HUVEC, rather than by any direct effect of the antibody on the neutrophils. When used in combination, MoAbs to CD11a and to CD11b inhibited migration in a nearly additive fashion. A similar additive effect was observed when MoAbs to CD11b and to ICAM-1 were used together. In contrast, MoAbs to CD11a and to ICAM-1 produced no more inhibition when used in combination than when added singly. These results show that ICAM-1, CD11a/CD18, and CD11b/CD18 all participate in controlling migration of neutrophils across endothelial monolayers in response to chemotactic agents.


2004 ◽  
Vol 29 (3) ◽  
pp. 228-232 ◽  
Author(s):  
N. ISOGAI ◽  
H. TANAKA ◽  
S. ASAMURA

This study was undertaken to characterize the relative degrees of arterial and venous trauma after graded avulsion injuries. Rat femoral arteries and veins were subjected to reproducible avulsion injuries using forces of between 60 and 220 g. Thrombotic occlusion occurred at lower avulsion forces in veins than in arteries. Histologic and scanning electron microscopic analysis indicated increased endothelial disruption and exposed elastic lamina with increasing avulsion force in both vessels, but more prominently in arteries. Intercellular adhesion molecule-1 (ICAM-1) mRNA expression was evident at 3 and 6 hours after avulsion injury in veins, but only with higher avulsion force injuries in arteries. ICAM-1 mRNA expression was not found in either vessel before or after this 3 to 6 hour post-injury interval. These results indicate that the amount of avulsion force to which traumatized extremity vessels are subjected has a direct effect on the degree of intimal injury and subsequent thrombosis.


Sign in / Sign up

Export Citation Format

Share Document