chronic ethanol
Recently Published Documents


TOTAL DOCUMENTS

2155
(FIVE YEARS 111)

H-INDEX

86
(FIVE YEARS 6)

Author(s):  
Mukund P Srinivasan ◽  
Kamlesh K Bhopale ◽  
Anna A Caracheo ◽  
Lata Kaphalia ◽  
Bin Gong ◽  
...  

Alcoholic chronic pancreatitis (ACP) is a fibroinflammatory disease of the pancreas. However, metabolic basis of ACP is not clearly understood. In this study, we evaluated differential pancreatic injury in hepatic alcohol dehydrogenase deficient (ADH-) deer mice fed chronic ethanol (EtOH), chronic plus binge EtOH, and chronic plus binge EtOH and fatty acid ethyl esters (FAEEs, nonoxidative metabolites of EtOH) to understand the metabolic basis of ACP. Hepatic ADH- and ADH normal (ADH+) deer mice were fed Lieber-DeCarli liquid diet containing 3% (w/v) EtOH for three months. One week before the euthanization, chronic EtOH fed mice were further administered with an oral gavage of binge EtOH with/without FAEEs. Blood alcohol concentration (BAC), pancreatic injury and inflammatory markers were measured. Pancreatic morphology, ultrastructural changes, endoplasmic reticulum (ER)/oxidative stress were examined using H & E staining, electron microscopy, immunostaining, and/or Western blot, respectively. Overall, BAC was substantially increased in chronic EtOH fed groups of ADH- vs. ADH+ deer mice. A significant change in pancreatic acinar cell morphology, with mild to moderate fibrosis and ultrastructural changes evident by dilatations and disruption of ER cisternae, ER/oxidative stress along with increased levels of inflammatory markers were observed in the pancreas of chronic EtOH fed groups of ADH- vs. ADH+ deer mice. Furthermore, chronic plus binge EtOH and FAEEs exposure elevated BAC, enhanced ER/oxidative stress and exacerbated chronic EtOH-induced pancreatic injury in ADH- deer mice suggesting a role of increased body burden of EtOH and its metabolism under reduced hepatic ADH in initiation and progression of ACP.


2021 ◽  
Vol 22 (22) ◽  
pp. 12547
Author(s):  
Yi-Hsiu Chen ◽  
Wan-Chun Chiu ◽  
Qian Xiao ◽  
Ya-Ling Chen ◽  
Hitoshi Shirakawa ◽  
...  

The purpose of this study was to investigate the beneficial effects of synbiotics on liver damage, intestinal health, and muscle loss, and their relevance in rats with chronic ethanol feeding. Thirty Wistar rats fed with a control liquid diet were divided into control and synbiotics groups, which were respectively provided with water or synbiotics solution (1.5 g/kg body weight/day) for 2 weeks. From the 3rd to 8th week, the control group was divided into a C group (control liquid diet + water) and an E group (ethanol liquid diet + water). The synbiotics group was separated in to three groups, SC, ASE, and PSE. The SC group was given a control liquid diet with synbiotics solution; the ASE group was given ethanol liquid diet with synbiotics solution, and the PSE group was given ethanol liquid diet and water. As the results, the E group exhibited liver damage, including increased AST and ALT activities, hepatic fatty changes, and higher CYP2E1 expression. Intestinal mRNA expressions of occludin and claudin-1 were significantly decreased and the plasma endotoxin level was significantly higher in the E group. In muscles, beclin-1 was significantly increased in the E group. Compared to the E group, the PSE and ASE groups had lower plasma ALT activities, hepatic fatty changes, and CYP2E1 expression. The PSE and ASE groups had significantly higher intestinal occludin and claudin-1 mRNA expressions and lower muscular beclin-1 expression when compared to the E group. In conclusion, synbiotics supplementation might reduce protein expression of muscle protein degradation biomarkers such as beclin-1 in rats with chronic ethanol feeding, which is speculated to be linked to the improvement of intestinal tight junction and the reduction of liver damage.


Author(s):  
Austin Parrish ◽  
Ankita Srivastava ◽  
Egle Juskeviciute ◽  
Jan B. Hoek ◽  
Rajanikanth Vadigepalli

Impaired liver regeneration has been considered as a hallmark of progression of alcohol-associated liver disease. Our previous studies demonstrated that in vivo inhibition of the microRNA (miRNA) miR21 can restore regenerative capacity of the liver in chronic ethanol-fed animals. The present study focuses on the role of microRNA regulatory networks that are likely to mediate the miR-21 action. Rats were chronically fed an ethanol-enriched diet along with pair-fed control animals and treated with AM21 (anti-miR-21), a locked nucleic acid antisense to miR-21. Partial hepatectomy (PHx) was performed and miRNA expression profiling over the course of liver regeneration was assessed. Our results showed dynamic expression changes in several miRNAs post PHx, notably with altered miRNA expression profiles between ethanol versus control groups. We found that in vivo inhibition of miR-21 led to correlated differential expression of miR-340-5p, and anti-correlated expression of miR-365, let-7a, miR-1224 and miR-146a across all sample groups post PHx. Gene set enrichment analysis identified a miRNA signature significantly associated with hepatic stellate cell activation within whole-liver tissue data. We hypothesized that at least part of the PHx-induced miRNA network changes responsive to miR-21 inhibition is localized to hepatic stellate cells. We validated this hypothesis using AM21 and TGF-β treatments in LX-2 human hepatic stellate cells in culture, and measured expression levels of select miRNAs by quantitative RT-PCR. Based on the in vivo and in vitro results, we propose a hepatic stellate cell miRNA regulatory network as contributing to the restoration of liver regenerative capacity by miR-21 inhibition.


Alcohol ◽  
2021 ◽  
Vol 96 ◽  
pp. 63-71
Author(s):  
Reza Fozooni ◽  
Mohammad Reza Jafarzadeh Shirazi ◽  
Saman Saedi ◽  
Bahia Namavar Jahromi ◽  
Arezoo Khoradmehr ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Bing-Xue Li ◽  
Guang-Hui Dong ◽  
Hao-Long Li ◽  
Jia-Song Zhang ◽  
Yan-Hua Bing ◽  
...  

Sensory information is transferred to the cerebellar cortex via the mossy fiber–granule cell (MF–GC) pathway, which participates in motor coordination and motor learning. We previously reported that chronic ethanol exposure from adolescence facilitated the sensory-evoked molecular layer interneuron–Purkinje cell synaptic transmission in adult mice in vivo. Herein, we investigated the effect of chronic ethanol exposure from adolescence on facial stimulation-evoked MF–GC synaptic transmission in the adult mouse cerebellar cortex using electrophysiological recording techniques and pharmacological methods. Chronic ethanol exposure from adolescence induced an enhancement of facial stimulation-evoked MF–GC synaptic transmission in the cerebellar cortex of adult mice. The application of an N-methyl-D-aspartate receptor (NMDAR) antagonist, D-APV (250 μM), induced stronger depression of facial stimulation-evoked MF–GC synaptic transmission in chronic ethanol-exposed mice compared with that in control mice. Chronic ethanol exposure-induced facilitation of facial stimulation evoked by MF–GC synaptic transmission was abolished by a selective GluN2A antagonist, PEAQX (10 μM), but was unaffected by the application of a selective GluN2B antagonist, TCN-237 (10 μM), or a type 1 metabotropic glutamate receptor blocker, JNJ16259685 (10 μM). These results indicate that chronic ethanol exposure from adolescence enhances facial stimulation-evoked MF–GC synaptic transmission via GluN2A, which suggests that chronic ethanol exposure from adolescence impairs the high-fidelity transmission capability of sensory information in the cerebellar cortex by enhancing the NMDAR-mediated components of MF–GC synaptic transmission in adult mice in vivo.


Sign in / Sign up

Export Citation Format

Share Document