Multifractal decomposition of certain recursive sets without the open set condition

2001 ◽  
Vol 21 (3) ◽  
pp. 369-374 ◽  
Author(s):  
Guo Hongwen ◽  
Deng Aijiao ◽  
Aijiao Deng
Fractals ◽  
2011 ◽  
Vol 19 (02) ◽  
pp. 221-226 ◽  
Author(s):  
L. OLSEN

We give a simple and direct proof of the fact that the Assouad dimension of a graph directed Moran fractal satisfying the Open Set Condition coincides with its Hausdorff and box dimensions.


Author(s):  
Hongwen Guo ◽  
Dihe Hu

We weaken the open set condition and define a finite intersection property in the construction of the random recursive sets. We prove that this larger class of random sets are fractals in the sense of Taylor, and give conditions when these sets have positive and finite Hausdorff measures, which in certain extent generalize some of the known results, about random recursive fractals.


2013 ◽  
Vol 276 (1-2) ◽  
pp. 243-260 ◽  
Author(s):  
Tian-jia Ni ◽  
Zhi-ying Wen

Fractals ◽  
2020 ◽  
Vol 28 (02) ◽  
pp. 2050028
Author(s):  
HUI RAO ◽  
SHU-QIN ZHANG

Skeleton is a new notion designed for constructing space-filling curves of self-similar sets. In a previous paper by Dai and the authors [Space-filling curves of self-similar sets (II): Edge-to-trail substitution rule, Nonlinearity 32(5) (2019) 1772–1809] it was shown that for all the connected self-similar sets with a skeleton satisfying the open set condition, space-filling curves can be constructed. In this paper, we give a criterion of existence of skeletons by using the so-called neighbor graph of a self-similar set. In particular, we show that a connected self-similar set satisfying the finite-type condition always possesses skeletons: an algorithm is obtained here.


2018 ◽  
Vol 40 (1) ◽  
pp. 221-232
Author(s):  
SABRINA KOMBRINK ◽  
STEFFEN WINTER

We show that any non-trivial self-similar subset of the real line that is invariant under a lattice iterated function system (IFS) satisfying the open set condition (OSC) is not Minkowski measurable. So far, this has only been known for special classes of such sets. Thus, we provide the last puzzle-piece in proving that under the OSC a non-trivial self-similar subset of the real line is Minkowski measurable if and only if it is invariant under a non-lattice IFS, a 25-year-old conjecture.


Nonlinearity ◽  
2008 ◽  
Vol 21 (6) ◽  
pp. 1227-1232 ◽  
Author(s):  
Qi-Rong Deng ◽  
Ka-Sing Lau

2001 ◽  
Vol 129 (9) ◽  
pp. 2689-2699 ◽  
Author(s):  
Yuval Peres ◽  
Michał Rams ◽  
Károly Simon ◽  
Boris Solomyak

2014 ◽  
Vol 35 (8) ◽  
pp. 2632-2668 ◽  
Author(s):  
HUA QIU

Let $K$ be the attractor of a linear iterated function system (IFS) $S_{j}(x)={\it\rho}_{j}x+b_{j},j=1,\ldots ,m$, on the real line $\mathbb{R}$ satisfying the generalized finite type condition (whose invariant open set ${\mathcal{O}}$ is an interval) with an irreducible weighted incidence matrix. This condition was recently introduced by Lau and Ngai [A generalized finite type condition for iterated function systems. Adv. Math.208 (2007), 647–671] as a natural generalization of the open set condition, allowing us to include many important overlapping cases. They showed that the Hausdorff and packing dimensions of $K$ coincide and can be calculated in terms of the spectral radius of the weighted incidence matrix. Let ${\it\alpha}$ be the dimension of $K$. In this paper, we state that $$\begin{eqnarray}{\mathcal{H}}^{{\it\alpha}}(K\cap J)\leq |J|^{{\it\alpha}}\end{eqnarray}$$ for all intervals $J\subset \overline{{\mathcal{O}}}$, and $$\begin{eqnarray}{\mathcal{P}}^{{\it\alpha}}(K\cap J)\geq |J|^{{\it\alpha}}\end{eqnarray}$$ for all intervals $J\subset \overline{{\mathcal{O}}}$ centered in $K$, where ${\mathcal{H}}^{{\it\alpha}}$ denotes the ${\it\alpha}$-dimensional Hausdorff measure and ${\mathcal{P}}^{{\it\alpha}}$ denotes the ${\it\alpha}$-dimensional packing measure. This result extends a recent work of Olsen [Density theorems for Hausdorff and packing measures of self-similar sets. Aequationes Math.75 (2008), 208–225] where the open set condition is required. We use these inequalities to obtain some precise density theorems for the Hausdorff and packing measures of $K$. Moreover, using these density theorems, we describe a scheme for computing ${\mathcal{H}}^{{\it\alpha}}(K)$ exactly as the minimum of a finite set of elementary functions of the parameters of the IFS. We also obtain an exact algorithm for computing ${\mathcal{P}}^{{\it\alpha}}(K)$ as the maximum of another finite set of elementary functions of the parameters of the IFS. These results extend previous ones by Ayer and Strichartz [Exact Hausdorff measure and intervals of maximum density for Cantor sets. Trans. Amer. Math. Soc.351 (1999), 3725–3741] and by Feng [Exact packing measure of Cantor sets. Math. Natchr.248–249 (2003), 102–109], respectively, and apply to some new classes allowing us to include Cantor sets in $\mathbb{R}$ with overlaps.


Sign in / Sign up

Export Citation Format

Share Document