ON THE ASSOUAD DIMENSION OF GRAPH DIRECTED MORAN FRACTALS

Fractals ◽  
2011 ◽  
Vol 19 (02) ◽  
pp. 221-226 ◽  
Author(s):  
L. OLSEN

We give a simple and direct proof of the fact that the Assouad dimension of a graph directed Moran fractal satisfying the Open Set Condition coincides with its Hausdorff and box dimensions.

2019 ◽  
Vol 150 (1) ◽  
pp. 261-275 ◽  
Author(s):  
Sascha Troscheit

AbstractThe class of stochastically self-similar sets contains many famous examples of random sets, for example, Mandelbrot percolation and general fractal percolation. Under the assumption of the uniform open set condition and some mild assumptions on the iterated function systems used, we show that the quasi-Assouad dimension of self-similar random recursive sets is almost surely equal to the almost sure Hausdorff dimension of the set. We further comment on random homogeneous and V -variable sets and the removal of overlap conditions.


Author(s):  
KATHRYN E. HARE ◽  
SASCHA TROSCHEIT

Abstract In analogy with the lower Assouad dimensions of a set, we study the lower Assouad dimensions of a measure. As with the upper Assouad dimensions, the lower Assouad dimensions of a measure provide information about the extreme local behaviour of the measure. We study the connection with other dimensions and with regularity properties. In particular, the quasi-lower Assouad dimension is dominated by the infimum of the measure’s lower local dimensions. Although strict inequality is possible in general, equality holds for the class of self-similar measures of finite type. This class includes all self-similar, equicontractive measures satisfying the open set condition, as well as certain “overlapping” self-similar measures, such as Bernoulli convolutions with contraction factors that are inverses of Pisot numbers. We give lower bounds for the lower Assouad dimension for measures arising from a Moran construction, prove that self-affine measures are uniformly perfect and have positive lower Assouad dimension, prove that the Assouad spectrum of a measure converges to its quasi-Assouad dimension and show that coincidence of the upper and lower Assouad dimension of a measure does not imply that the measure is s-regular.


Author(s):  
Hongwen Guo ◽  
Dihe Hu

We weaken the open set condition and define a finite intersection property in the construction of the random recursive sets. We prove that this larger class of random sets are fractals in the sense of Taylor, and give conditions when these sets have positive and finite Hausdorff measures, which in certain extent generalize some of the known results, about random recursive fractals.


2013 ◽  
Vol 276 (1-2) ◽  
pp. 243-260 ◽  
Author(s):  
Tian-jia Ni ◽  
Zhi-ying Wen

Fractals ◽  
2020 ◽  
Vol 28 (02) ◽  
pp. 2050028
Author(s):  
HUI RAO ◽  
SHU-QIN ZHANG

Skeleton is a new notion designed for constructing space-filling curves of self-similar sets. In a previous paper by Dai and the authors [Space-filling curves of self-similar sets (II): Edge-to-trail substitution rule, Nonlinearity 32(5) (2019) 1772–1809] it was shown that for all the connected self-similar sets with a skeleton satisfying the open set condition, space-filling curves can be constructed. In this paper, we give a criterion of existence of skeletons by using the so-called neighbor graph of a self-similar set. In particular, we show that a connected self-similar set satisfying the finite-type condition always possesses skeletons: an algorithm is obtained here.


2018 ◽  
Vol 40 (1) ◽  
pp. 221-232
Author(s):  
SABRINA KOMBRINK ◽  
STEFFEN WINTER

We show that any non-trivial self-similar subset of the real line that is invariant under a lattice iterated function system (IFS) satisfying the open set condition (OSC) is not Minkowski measurable. So far, this has only been known for special classes of such sets. Thus, we provide the last puzzle-piece in proving that under the OSC a non-trivial self-similar subset of the real line is Minkowski measurable if and only if it is invariant under a non-lattice IFS, a 25-year-old conjecture.


Nonlinearity ◽  
2008 ◽  
Vol 21 (6) ◽  
pp. 1227-1232 ◽  
Author(s):  
Qi-Rong Deng ◽  
Ka-Sing Lau

2001 ◽  
Vol 129 (9) ◽  
pp. 2689-2699 ◽  
Author(s):  
Yuval Peres ◽  
Michał Rams ◽  
Károly Simon ◽  
Boris Solomyak

Sign in / Sign up

Export Citation Format

Share Document