SCHAUDER BASIS DETERMINING PROPERTIES

1992 ◽  
Vol 12 (1) ◽  
pp. 89-97
Author(s):  
Qiyuan Na
Keyword(s):  
2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Ahmed Morsy ◽  
Nashat Faried ◽  
Samy A. Harisa ◽  
Kottakkaran Sooppy Nisar

AbstractIn this work, we establish an approach to constructing compact operators between arbitrary infinite-dimensional Banach spaces without a Schauder basis. For this purpose, we use a countable number of basic sequences for the sake of verifying the result of Morrell and Retherford. We also use a nuclear operator, represented as an infinite-dimensional matrix defined over the space $\ell _{1}$ℓ1 of all absolutely summable sequences. Examples of nuclear operators over the space $\ell _{1}$ℓ1 are given and used to construct operators over general Banach spaces with specific approximation numbers.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Zhaojun Wu ◽  
Zuxing Xuan

The main purpose of this paper is to investigate the characteristic functions and Borel exceptional values ofE-valued meromorphic functions from theℂR={z:|z|<R},  0<R≤+∞to an infinite-dimensional complex Banach spaceEwith a Schauder basis. Results obtained extend the relative results by Xuan, Wu and Yang, Bhoosnurmath, and Pujari.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Havva Nergiz ◽  
Feyzi Başar

The sequence space was introduced by Maddox (1967). Quite recently, the domain of the generalized difference matrix in the sequence space has been investigated by Kirişçi and Başar (2010). In the present paper, the sequence space of nonabsolute type has been studied which is the domain of the generalized difference matrix in the sequence space . Furthermore, the alpha-, beta-, and gamma-duals of the space have been determined, and the Schauder basis has been given. The classes of matrix transformations from the space to the spaces ,candc0have been characterized. Additionally, the characterizations of some other matrix transformations from the space to the Euler, Riesz, difference, and so forth sequence spaces have been obtained by means of a given lemma. The last section of the paper has been devoted to conclusion.


Author(s):  
Ahmadu Kiltho ◽  

The purpose of this paper is to discover and examine a four-dimensional Pascal matrix domain on Pascal sequence spaces. We show that they are spaces and also establish their Schauder basis, topological properties, isomorphism and some inclusions.


1968 ◽  
Vol 20 ◽  
pp. 233-241 ◽  
Author(s):  
John P. Russo

The notions of monotone bases and bases of subspaces are well known in a normed linear space setting and have obvious extensions to pseudo-metrizable linear topological spaces. In this paper, these notions are extended to arbitrary linear topological spaces. The principal result gives a list of properties that are equivalent to a sequence (Mi) of complete subspaces being an e-Schauder basis of subspaces for the closed linear span of . A corollary of this theorem is the fact that an e-Schauder basis for a dense subspace of a linear topological space is an e-Schauder basis for the whole space.


2007 ◽  
Vol 143 (2) ◽  
pp. 387-390
Author(s):  
Ioana Ghenciu ◽  
Paul Lewis

AbstractGhenciu and Lewis introduced the notion of a strong Dunford–Pettis set and used this notion to study the presence or absence of isomorphic copies of c0 in Banach spaces. The authors asserted that they could obtain a fundamental result of J. Elton without resorting to Ramsey theory. While the stated theorems are correct, unfortunately there is a flaw in the proof of the first theorem in the paper which also affects subsequent corollaries and theorems. The difficulty is discussed, and Elton's results are employed to establish a Schauder basis proposition which leads to a quick proof of the theorem in question. Additional results where questions arise are discussed on an individual basis.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Chiara Boiti ◽  
David Jornet ◽  
Alessandro Oliaro ◽  
Gerhard Schindl

AbstractWe prove that the Hermite functions are an absolute Schauder basis for many global weighted spaces of ultradifferentiable functions in the matrix weighted setting and we determine also the corresponding coefficient spaces, thus extending the previous work by Langenbruch. As a consequence, we give very general conditions for these spaces to be nuclear. In particular, we obtain the corresponding results for spaces defined by weight functions.


Sign in / Sign up

Export Citation Format

Share Document