Transformation from internal coordinates to cartesian displacements in the Eckart frame for a triatomic molecule

1998 ◽  
Vol 229 (2-3) ◽  
pp. 217-222 ◽  
Author(s):  
Rossend Rey
1989 ◽  
Vol 54 (1) ◽  
pp. 18-27 ◽  
Author(s):  
Juan F. Arenas ◽  
Juan I. Marcos ◽  
Francisco J. Ramírez

The general quadratic force field for the in-plane vibrations of terephthalonitrile was calculated by the semi-empirical MINDO/3 method. This force field was refined to the frequencies observed experimentally for terephthalonitrile and isotopic shifts of terephthalonitrile-[15N2]. The refined frequencies reproduce the experimental data with errors less than 0.5%. The normal coordinates and the force field in internal coordinates were also calculated from the refined field.


2007 ◽  
Vol 40 (1) ◽  
pp. 10-15 ◽  
Author(s):  
Attilio Immirzi ◽  
Davide Alfano ◽  
Consiglia Tedesco

Two points of general interest in structural refinement of polymers based on internal coordinates are discussed: the chain orientation and the chain continuity. Using a proprietary computer program, based on revised approaches to these questions, the structure of polyisobutene has been reconsidered, using new X-ray diffraction measurements (Fuji image plate) and performing a structure refinement based on internal coordinates. Three refinement schemes, with a decreasing number of degrees of freedom, have been considered, with the conclusion that the distortion from the 83regular helix, claimed by Tadokoro [(1979).Structure of Crystalline Polymers, p. 136. New York: Wiley-Interscience], is confirmed, though lower than supposed. The new procedures implemented for chain orientation and chain continuity work excellently.


Sign in / Sign up

Export Citation Format

Share Document