scholarly journals Random matrix theory, chiral perturbation theory, and lattice data

1999 ◽  
Vol 466 (2-4) ◽  
pp. 293-300 ◽  
Author(s):  
M.E. Berbenni-Bitsch ◽  
M. Göckeler ◽  
H. Hehl ◽  
S. Meyer ◽  
P.E.L. Rakow ◽  
...  
1999 ◽  
Vol 540 (1-2) ◽  
pp. 317-344 ◽  
Author(s):  
J.C. Osborn ◽  
D. Toublan ◽  
J.J.M. Verbaarschot

2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Prabal Adhikari ◽  
Jens O. Andersen ◽  
Martin A. Mojahed

AbstractWe calculate the light-quark condensate, the strange-quark condensate, the pion condensate, and the axial condensate in three-flavor chiral perturbation theory ($$\chi $$ χ PT) in the presence of an isospin chemical potential at next-to-leading order at zero temperature. It is shown that the three-flavor $$\chi $$ χ PT effective potential and condensates can be mapped onto two-flavor $$\chi $$ χ PT ones by integrating out mesons with strange-quark content (kaons and eta), with renormalized couplings. We compare the results for the light-quark and pion condensates at finite pseudoscalar source with ($$2+1$$ 2 + 1 )-flavor lattice QCD, and we also compare the axial condensate at zero pseudoscalar and axial sources with lattice QCD data. We find that the light-quark, pion, and axial condensates are in very good agreement with lattice data. There is an overall improvement by including NLO effects.


2022 ◽  
Vol 258 ◽  
pp. 08004
Author(s):  
Maarten Golterman ◽  
Yigal Shamir

We review dilaton chiral perturbation theory (dChPT), the effective low-energy theory for the light sector of near-conformal, confining theories. dChPT provides a systematic expansion in both the fermion mass and the distance to the conformal window. It accounts for the pions and the light scalar, the approximate Nambu–Goldstone bosons for chiral and scale symmetry, respectively. A unique feature of dChPT is the existence of a large-mass regime in which the theory exhibits approximate hyperscaling, while the expansion nevertheless remains systematic. We discuss applications to lattice data, presenting successes as well as directions for future work.


Author(s):  
Jan W Dash ◽  
Xipei Yang ◽  
Mario Bondioli ◽  
Harvey J. Stein

Sign in / Sign up

Export Citation Format

Share Document