scholarly journals Dilaton chiral perturbation theory and applications

2022 ◽  
Vol 258 ◽  
pp. 08004
Author(s):  
Maarten Golterman ◽  
Yigal Shamir

We review dilaton chiral perturbation theory (dChPT), the effective low-energy theory for the light sector of near-conformal, confining theories. dChPT provides a systematic expansion in both the fermion mass and the distance to the conformal window. It accounts for the pions and the light scalar, the approximate Nambu–Goldstone bosons for chiral and scale symmetry, respectively. A unique feature of dChPT is the existence of a large-mass regime in which the theory exhibits approximate hyperscaling, while the expansion nevertheless remains systematic. We discuss applications to lattice data, presenting successes as well as directions for future work.

2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Prabal Adhikari ◽  
Jens O. Andersen ◽  
Martin A. Mojahed

AbstractWe calculate the light-quark condensate, the strange-quark condensate, the pion condensate, and the axial condensate in three-flavor chiral perturbation theory ($$\chi $$ χ PT) in the presence of an isospin chemical potential at next-to-leading order at zero temperature. It is shown that the three-flavor $$\chi $$ χ PT effective potential and condensates can be mapped onto two-flavor $$\chi $$ χ PT ones by integrating out mesons with strange-quark content (kaons and eta), with renormalized couplings. We compare the results for the light-quark and pion condensates at finite pseudoscalar source with ($$2+1$$ 2 + 1 )-flavor lattice QCD, and we also compare the axial condensate at zero pseudoscalar and axial sources with lattice QCD data. We find that the light-quark, pion, and axial condensates are in very good agreement with lattice data. There is an overall improvement by including NLO effects.


1997 ◽  
Vol 395 (1-2) ◽  
pp. 89-95 ◽  
Author(s):  
Thomas R. Hemmert ◽  
Barry R. Holstein ◽  
Joachim Kambor

1999 ◽  
Vol 466 (2-4) ◽  
pp. 293-300 ◽  
Author(s):  
M.E. Berbenni-Bitsch ◽  
M. Göckeler ◽  
H. Hehl ◽  
S. Meyer ◽  
P.E.L. Rakow ◽  
...  

1999 ◽  
Vol 14 (31) ◽  
pp. 4943-4952 ◽  
Author(s):  
C. ADAM

The massive Schwinger model may be analyzed by a perturbation expansion in the fermion mass. However, the results of this mass perturbation theory are sensible only for sufficiently small fermion mass. By performing a renormal-ordering, we arrive at a chiral perturbation expansion where the expansion parameter remains small even for large fermion mass. We use this renormal-ordered chiral perturbation theory for a computation of the Schwinger mass and compare our results with lattice computations.


Sign in / Sign up

Export Citation Format

Share Document