Planar solid oxide fuel cell integrated system technology development

1998 ◽  
Vol 71 (1-2) ◽  
pp. 354-360 ◽  
Author(s):  
S. Elangovan ◽  
J. Hartvigsen ◽  
A. Khandkar ◽  
R.M. Privette ◽  
K.E. Kneidel ◽  
...  
2003 ◽  
Author(s):  
Dawson A. Plummer ◽  
Comas Haynes ◽  
William Wepfer

Solid oxide fuel cell (SOFC) technology incorporates electrochemical reactions that generate electricity and high quality heat. The coupling of this technology with gas turbine bottoming cycles, to form hybrid power systems, leads to high efficiency levels. The purpose of this study is to conceptually integrate the hybrid power system with existing and imminent coal gasification technologies through computer simulation. The gasification technologies considered for integration include the Kellogg Brown Root (KBR) Transport Reactor and Entrained Coal Gasification. Parametric studies were performed to assess the effect of changes in pertinent fuel cell stack process settings such as operating voltage, inverse equivalence ratio and fuel utilization will be varied. Power output, system efficiency and costs are the chosen dependent variables of interest. Coal gasification data and a proven SOFC model program are used to test the theoretical integration. Feasibility and economic comparisons between the new integrated system and existing conventional systems are also made.


Author(s):  
Jeongmin Ahn ◽  
Paul D. Ronney ◽  
Zongping Shao ◽  
Sossina M. Haile

A thermally self-sustaining miniature power generation device was developed utilizing a single-chamber solid oxide fuel cell (SOFC) placed in a controlled thermal environment provided by a spiral counterflow “Swiss roll” heat exchanger and combustor. With the single-chamber design, fuel/oxygen crossover due to cracking of seals via thermal cycling is irrelevant and coking on the anode is practically eliminated. Appropriate SOFC operating temperatures were maintained even at low Reynolds numbers (Re) via combustion of the fuel cell effluent at the center of the Swiss roll. Both propane and higher hydrocarbon fuels were examined. Extinction limits and thermal behavior of the integrated system were determined in equivalence ratio—Re parameter space and an optimal regime for SOFC operation were identified. SOFC power densities up to 420 mW/cm2 were observed at low Re. These results suggest that single-chamber SOFCs integrated with heat-recirculating combustors may be a viable approach for small-scale power generation devices.


2013 ◽  
Vol 241 ◽  
pp. 477-485 ◽  
Author(s):  
Ludger Blum ◽  
L.G.J. (Bert) de Haart ◽  
Jürgen Malzbender ◽  
Norbert H. Menzler ◽  
Josef Remmel ◽  
...  

Author(s):  
Milad Sadeghzadeh ◽  
Mehdi Mehrpooya ◽  
Hojat Ansarinasab

Title Multi-production plant is an idea highlighting cost- and energy-saving purposes. However, just integrating different sub-systems is not desired and the output and performance based on evaluation criteria must be assessed. In this study, an integrated energy conversion system composed of solid oxide fuel cell (SOFC), solid oxide electrolyzer cell (SOEC) and Rankine steam cycle is proposed to develop a multi-production system of power, heat and hydrogen to alleviate energy dissipation and to preserve the environment by utilizing and extracting the most possible products from the available energy source. With this regard, natural gas and water are used to drive the SOEC and the Rankine steam cycle, respectively. The required heat and power demand of the electrolyzer are designed to be provided by the fuel cell and the Rankine cycle. The feasibility of the designed integrated system is evaluated through comprehensive exergy-based analysis. The technical performance of the system is evaluated through exergy assessment and it is obtained that the SOFC and the SOEC can achieve to the high exergy efficiency of 84.8% and 63.7%, respectively. The designed system provides 1.79 kg/h of hydrogen at 125 kPa. In addition, the effective designed variables on the performance of the designed integrated system are monitored to optimize the system’s performance in terms of technical efficiency, cost-effectivity and environmental considerations. This assessment shows that 59.4 kW of the available exergy is destructed in the combustion chamber. Besides, the techno-economic analysis and exergoenvironmental assessment demonstrate the selected compressors should be re-designed to improve the cost-effectivity and decline the negative environmental impact of the designed integrated energy conversion system. In addition, it is calculated that the SOEC has the highest total cost and also the highest negative impact on the environment compared to other designed units in the proposed integrated energy conversion system.


Sign in / Sign up

Export Citation Format

Share Document