steam cycle
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 31)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
Muhammad Rizki ◽  
◽  
Romy Romy ◽  

The increasing energy efficiency program will decrease the consumption of energy. If these improvements are carried out together, it will certainly ensure energy reliability for a sustainable and better future. The aim of this paper was to investigate the possibility of increasing efficiency in the crude oil heating system at PT. Pertamina EP Asset 1 Lirik Field. The research method was done by modification the steam cycle using the close and open Feed Water Heater (FWH). As result, the efficiency of steam cycle of close FWH increased 2.53% and 2.78% for open FWH. While the efficiency of the steam cycle in the initial conditions was 36.74%.


2021 ◽  
Author(s):  
Jin Young Heo ◽  
Won Woong Lee ◽  
Jung Hwan Park ◽  
Jeong Ik Lee
Keyword(s):  

2021 ◽  
pp. 1-16
Author(s):  
Nargess N. Abbasi ◽  
Mohammad Hasan Khoshgoftar Manesh ◽  
Mohsen Yazdi

Abstract In this paper, a novel quadruple cycle for power generation is presented. It consists of a gas turbine cycle, a Brayton cycle of supercritical carbon dioxide, a Rankin organic cycle with a Cyclopentane working fluid, a Rankin steam cycle, a central tower, and a heliostat solar field. Because of improving the Brayton cycle's performance, supercritical carbon dioxide and the Rankine organic cycle have been added to the system. A solar tower system has been used to heat the incoming airflow to the combustion chamber. The heat generated by the solar tower in the first part increases the gas turbine cycle's air temperature, and in the second part, the water vapor heats the Rankin steam cycle. Due to solar radiation instability, the proposed system's performance is dynamically examined every hour of the year, and the results are reported. The thermodynamic simulation results are validated by Thermoflex software and reference case with high accuracy. In this regard, Energy, Exergy, Exergoeconomic, Exergoenvironmental, Emergoeconomic, and Emergoenvironmental (6E) analyses have been performed for this system. The result indicates that the gas turbine cycle's f fuel consumption is reduced by about 9% to 1.53 kg/s with the solar system's addition. Using solar energy and the Rankin steam cycle, the cycle's production capacity will increase from 43 MW to 66 MW.


Author(s):  
Victoria Tarasova

The most promising direction of CHP modernization is the introduction of power units on supercritical steam parameters. Increasing steam parameters is one of the most effective ways to increase the efficiency of a CHP plant. Thus, the development of the concept of thermal schemes turbines for supercritical steam parameters, taking into account the characteristics of their operation at the existing CHP Ukraine is an actual scientific problem. The solution to this problem will make it possible to replace or modernize the power generating equipment that has exhausted its resource with modern power units that meet world economic and environmental standards. The method of exergy analysis is adapted to the study of thermal schemes of CHP plants with supercritical steam cycle. As an example of application of a method the exergy analysis of the power plant working on the one-stage thermal scheme is carried out. Within the framework of the proposed method, a thermodynamic and topology-exergetic model of the power plant is created. Based on the topology-exergetic model the indicators of thermodynamic efficiency of the power plant operating on supercritical parameters of steam are determined. It is proposed to apply the theory of experiment planning in exergy analysis of the thermal circuit of a CHP. With the involvement of this theory, a multifactor numerical experiment was conducted to determine the impact on the exergetic efficiency of the thermal scheme of CHP of the main determining variable factors, such as adiabatic and thermal efficiency of the plant, as well as the operating parameters. The generalized equation of functional interrelation of exergetic efficiency of system and exergetic efficiency of elements of thermal scheme of CHP is received. The proposed equation can be used as a tool for further training of neural networks and their application both in the design and in the diagnosis of energy efficiency of CHP. According to the results of the factor analysis, a rather high conservatism of the considered one-stage scheme of CHP to the change of the varied parameters was revealed. This indicates the presence of more rigid structural links between the elements, which is generally a positive aspect of the reconstruction.


2021 ◽  
Vol 2 (2) ◽  
pp. 101-113
Author(s):  
Mochammad Fa'iq Khasmadin ◽  
Udi Harmoko
Keyword(s):  

Potensi energi panas bumi yang dimiliki oleh Indonesia sangat besar dan pemanfaatannya belum optimal. Data dari Badan Geologi Kementrian ESDM menunjukkan bahwa potensi energi panas bumi di Indonesia mencapai 29,5 GW atau 40% dari potensi panas bumi di dunia. Pemanfaatan energi panas bumi di Indonesia untuk dikonversikan menjadi energi listrik sebesar 1.189MW (tahun 2014). Keunggulan pemanfaatan energi panas bumi adalah energi bersih dan ramah lingkungan. Energi panas bumi mampu menggantikan pembangkit berbahan bakar batu bara ataupun gas. Upaya dalam pemanfaatan energi panas bumi adalah dengan melakukan pembangunan PLTP di area WKP yang memiliki potensi energi panas bumi yang besar salah satunya adalah WKP Patuha Ciwidey yang masih masuk dalam WKP Pangalengan. Saat ini Kapasitas pembangkit yang dibangkitkan adalah mencapai 1x60MW. Kajian dalam penelitian ini bertujuan untuk mengetahui potensi dan pemanfaatan energi panas bumi di WKP Patuha Ciwidey. Teknologi yang digunakan pada PLTP Patuha Unit 1 adalah siklus uap kering (Direct Dry Steam Cycle) Fluida uap dialirkan secara langsung ke Turbin. Sistem konversi ini merupakan sistem konversi yang paling sederhana. Dalam kajian ini ditemukan bahwa secara lateral terdapat tiga reservoir di area Patuha yang saling terhubung diantara Kawah Putih Cibuni, dan Ciwidey yang dipisahkan oleh Sesar Normal Cimanggu sehingg memisahkan antara area reservoir Kawah Cibuni dan reservoir Kawah Putih, sedangkan sesar normal Cileulur memisahkan area reservoir Kawah Putih dan area reservoir Kawah Ciwidey. Sedangkan Kebutuhan uap yang digunakan dalam pembangkitan PLTP unit 1 Patuha yakni dengan inlet pressure 11 bar abs, tekanan kondensor 0.1 bar abs, dari hasil perhitungan diperkirakan unit 1 Patuha membutuhkan uap sekitar 370.8 ton/jam atau 103 kg/s dengan konsumsi uap rara-rata sebesar 6.75 ton/jam.MW. Dalam upaya menjaga dan mengembangkan pemanfaatan energi diperlukan perencanaan desain proyek seumur hidup long life sustainability, dengan mempertimbangkan kondisi lingkungan, prediksi sumur, perencanaan steamfield, dan simulasi reservoir.


2021 ◽  
Vol 28 (3) ◽  
pp. 61-70
Author(s):  
Waad Salih ◽  
Aadel Alkumait ◽  
Hameed Khalaf

The present work depends on the previous energy and exergy analysis study for a steam cycle of North Refineries Company (NRC)/Baiji, Iraq, which was conducted at real and rated operating loads. After the results of that study are presented, this current study is conducted and aimed to produce the engineering solutions for improving the cycle performance through studying the operational choices that are actually available in the plant as investigating the effect of increasing the air mass flow rate in the main condenser of the cycle. The calculations were done by using the MATLAB program. The results showed that increasing the air mass flow rate or increasing the number of fans in service from 8 to 14 fans will reduce the energy losses in the main condenser and in the cycle. The energy loss reduction can be enhanced in the improvement of the energy efficiency by raising it from 30.11 % to 48.61 % at real load and from 33.49 % to 48.93 % at rated load. On the other hand, the exergy analysis showed that the exergy destructions for the main condenser and for the cycle would decrease if the number of fans increased. This decreasing of exergy destruction in the main condenser will raise the exergy efficiency from 21.95 to 27.06 % at real load and from 21.18 % to 25.45 % at rated load.


Sign in / Sign up

Export Citation Format

Share Document