Corona power loss determination on multi-phase power transmission lines

2001 ◽  
Vol 58 (2) ◽  
pp. 123-132 ◽  
Author(s):  
Mazen Abdel-Salam ◽  
Essam Zaki Abdel-Aziz
SainETIn ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 1-7
Author(s):  
Wellington Octary ◽  
Hamzah Eteruddin ◽  
Abrar Tanjung

Power transmission network system plays an important role in distributing power, especially in 150 kV power transmission lines. In 2013, the was a change in term of conductor type in in 150 kV transmission lines of Garuda Sakti – Balai Pungut, from ACSR to ACCC, because of the growing number of power plants in Riau and power distribution in every conductor supplying higher current, when given higher current, ACCC conductor is capable of transmitting power twice the ACSR conductor. The single line diagram of UPT Pekanbaru, data from power station (GI) Garuda Sakti – Balai Pungut, conductor data and load data are all data necessary for the study and calculation on ACCC conductor. The result shows that the amount of voltage drop power losses of ACCC conductor is 5.098 kV, while the power loss is 479,187 with the sagging value is 6.950 m, compared to the old conductor, the ACSR type, with the voltage drop of 7.517 kV, power loss of 828.863 kW, and the sagging value of 9.010 m, all measured in 150 kV power transmission lines of PT. PLN PERSERO UPT Pekanbaru.


2016 ◽  
Vol 2016 (4) ◽  
pp. 8-10 ◽  
Author(s):  
B.I. Kuznetsov ◽  
◽  
A.N. Turenko ◽  
T.B. Nikitina ◽  
A.V. Voloshko ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1561
Author(s):  
Hao Chen ◽  
Zhongnan Qian ◽  
Chengyin Liu ◽  
Jiande Wu ◽  
Wuhua Li ◽  
...  

Current measurement is a key part of the monitoring system for power transmission lines. Compared with the conventional current sensor, the distributed, self-powered and contactless current sensor has great advantages of safety and reliability. By integrating the current sensing function and the energy harvesting function of current transformer (CT), a time-multiplexed self-powered wireless sensor that can measure the power transmission line current is presented in this paper. Two operating modes of CT, including current sensing mode and energy harvesting mode, are analyzed in detail. Through the design of mode-switching circuit, harvesting circuit and measurement circuit are isolated using only one CT secondary coil, which eliminates the interference between energy harvesting and current measurement. Thus, the accurate measurement in the current sensing mode and the maximum energy collection in the energy harvesting mode are both realized, all of which simplify the online power transmission line monitoring. The designed time-multiplexed working mode allows the sensor to work at a lower transmission line current, at the expense of a lower working frequency. Finally, the proposed sensor is verified by experiments.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Vedanta Pradhan ◽  
O. D. Naidu ◽  
Sinisa Zubic ◽  
Patrick Cost

Author(s):  
Ronaldo F. R. Pereira ◽  
Felipe P. Albuquerque ◽  
Luisa H. B. Liboni ◽  
Eduardo C. M. Costa ◽  
Mauricio C. de Oliveira

Sign in / Sign up

Export Citation Format

Share Document