scholarly journals Relationship between endothelin-1 extraction in the peripheral circulation and systemic vascular resistance in patients with severe congestive heart failure

1999 ◽  
Vol 33 (2) ◽  
pp. 530-537 ◽  
Author(s):  
Takayoshi Tsutamoto ◽  
Atsuyuki Wada ◽  
Tomoko Hisanaga ◽  
Keiko Maeda ◽  
Masato Ohnishi ◽  
...  
1980 ◽  
Vol 239 (4) ◽  
pp. H477-H477 ◽  
Author(s):  
Joseph A. Franciosa ◽  
Richard Heckel ◽  
Catherine Limas ◽  
Jay N. Cohn

To study heart failure from a myocardial lesion, we injected glass beads into the circumflex coronary artery of 11 conscious dogs and followed hemodynamics for 10 mo. Heart rate remained unchanged. Control mean arterial pressure of 112.3 ± 3.0 (SE) mmHg was unchanged at 1 and 3 mo, but rose to 127.2 ± 8.5 to 84.0 ± 7.6 ml . kg-1 . min-1 at 10 mo (P < 0.02), but was unchanged at 1 and 3 mo. Left ventricular end-diastolic pressure (LVEDP) averaged 4.6 ± 0.8 mmHg at control and rose to 11.8 ± 1.4 mmHg at 1 mo and 14.9 ± 2.5 mmHg at 10 mo (both P < 0.01). Systemic vascular resistance rose significantly by 10 mo. The ratio of stroke work to LVEDP fell from 13.1 ± 0.1 at control to 3.8 ± 0.5 by 10 mo (P < 0.01). In this dog model, left ventricular dysfunction is manifest early by increased LVEDP and later by high systemic vascular resistance with low cardiac output, thus suggesting a role of the peripheral circulation in the progression of heart failure.


1996 ◽  
Vol 270 (5) ◽  
pp. H1819-H1824 ◽  
Author(s):  
A. Wada ◽  
T. Tsutamato ◽  
Y. Maeda ◽  
T. Kanamori ◽  
Y. Matsuda ◽  
...  

Atrial natriuretic peptide (ANP) has been shown to counteract the response of endothelin-1 (ET-1), but whether endogenous ANP actually inhibits the systemic release of ET-1 in vivo has not yet been determined. We administered HS-142-1 (HS), a specific antagonist of the guanylate cyclase-coupled ANP receptor, to conscious dogs with severe congestive heart failure (CHF) produced by rapid right ventricular pacing (n = 5, for 22 days) at doses of 0.3, 1.0, and 3.0 mg/kg at 30-minutes intervals. In the present study, plasma ANP and ET-1 levels were significantly elevated in CHF(348 +/-58 and 4.54 +/- 0.60 pg/ml, respectively compared with those in control dogs (65 +/- 4, P < 0.01, 1.30 +/- 0.17 pg/ml, P < 0.001). HS inhibited plasma guanosine 3',5'-cyclic monophosphate (cGMP) levels, a biological market of endogenous ANP activity, in a dose-dependent manner from 21.8 +/- 2.2 to 7.2 +/- 1.4 pmol/ml (P < 0.001), with concomitant significant increases in plasma ET-1 levels from 4.54 +/- 0.60 to 6.60 +/- 0.72 pg/ml (P < 0.05). There was a significant negative correlation between the decrease in plasma cGMP and the increment in plasma ET-1 (r = -0.64, P < 0.01). Despite these responses, mean arterial pressure and pulmonary arterial pressure did not change significantly. Plasma angiotensin II and arginine vasopressin levels, both of which have been reported to stimulate ET-1 secretion in vitro, also showed no significant changes. These results strongly suggest that endogenous ANP directly inhibits endogenous ET-1 secretion through a cGMP-mediated pathway in chronic severe CHF.


1999 ◽  
Vol 5 (3) ◽  
pp. 18
Author(s):  
Philippe L. Selvais ◽  
Laurent J. Rousseau ◽  
Annie R. Robert ◽  
Sylvie A. Ahn ◽  
Jean-Marie Ketelslegers ◽  
...  

2000 ◽  
Vol 88 (3) ◽  
pp. 1051-1060 ◽  
Author(s):  
Ling Chen ◽  
Quihu Shi ◽  
Steven M. Scharf

Because of similar physiological changes such as increased left ventricular (LV) afterload and sympathetic tone, an exaggerated depression in cardiac output (CO) could be expected in patients with coexisting obstructive sleep apnea and congestive heart failure (CHF). To determine cardiovascular effects and mechanisms of periodic obstructive apnea in the presence of CHF, 11 sedated and chronically instrumented pigs with CHF (rapid pacing) were tested with upper airway occlusion under room air breathing (RA), O2 breathing (O2), and room air breathing after hexamethonium (Hex). All conditions led to large negative swings in intrathoracic pressure (−30 to −39 Torr) and hypercapnia ([Formula: see text] ∼60 Torr), and RA and Hex also caused hypoxia (to ∼42 Torr). Relative to baseline, RA increased mean arterial pressure (from 97.5 ± 5.0 to 107.3 ± 5.7 Torr, P < 0.01), systemic vascular resistance, LV end-diastolic pressure, and LV end-systolic length while it decreased CO (from 2.17 ± 0.27 to 1.52 ± 0.31 l/min, P < 0.01), stroke volume (SV; from 23.5 ± 2.4 to 16.0 ± 4.0 ml, P < 0.01), and LV end-diastolic length (LVEDL). O2 and Hex decreased mean arterial pressure [from 102.3 ± 4.1 to 16.0 ± 4.0 Torr ( P < 0.01) with O2 and from 86.0 ± 8.5 to 78.1 ± 8.7 Torr ( P < 0.05) with Hex] and blunted the reduction in CO [from 2.09 ± 0.15 to 1.78 ± 0.18 l/ml for O2 and from 2.91 ± 0.43 to 2.50 ± 0.35 l/ml for Hex (both P< 0.05)] and SV. However, the reduction in LVEDL and LV end-diastolic pressure was the same as with RA. There was no change in systemic vascular resistance and LVEDL during O2 and Hex relative to baseline. In the CHF pigs during apnea, there was an exaggerated reduction in CO and SV relative to our previously published data from normal sedated pigs under similar conditions. The primary difference between CHF (present study) and the normal animals is that, in addition to increased LV afterload, there was a decrease in LV preload in CHF contributing to SV depression not seen in normal animals. The decrease in LV preload during apneas in CHF may be related to effects of ventricular interdependence.


Sign in / Sign up

Export Citation Format

Share Document