Hemodynamic effects of periodic obstructive apneas in sedated pigs with congestive heart failure

2000 ◽  
Vol 88 (3) ◽  
pp. 1051-1060 ◽  
Author(s):  
Ling Chen ◽  
Quihu Shi ◽  
Steven M. Scharf

Because of similar physiological changes such as increased left ventricular (LV) afterload and sympathetic tone, an exaggerated depression in cardiac output (CO) could be expected in patients with coexisting obstructive sleep apnea and congestive heart failure (CHF). To determine cardiovascular effects and mechanisms of periodic obstructive apnea in the presence of CHF, 11 sedated and chronically instrumented pigs with CHF (rapid pacing) were tested with upper airway occlusion under room air breathing (RA), O2 breathing (O2), and room air breathing after hexamethonium (Hex). All conditions led to large negative swings in intrathoracic pressure (−30 to −39 Torr) and hypercapnia ([Formula: see text] ∼60 Torr), and RA and Hex also caused hypoxia (to ∼42 Torr). Relative to baseline, RA increased mean arterial pressure (from 97.5 ± 5.0 to 107.3 ± 5.7 Torr, P < 0.01), systemic vascular resistance, LV end-diastolic pressure, and LV end-systolic length while it decreased CO (from 2.17 ± 0.27 to 1.52 ± 0.31 l/min, P < 0.01), stroke volume (SV; from 23.5 ± 2.4 to 16.0 ± 4.0 ml, P < 0.01), and LV end-diastolic length (LVEDL). O2 and Hex decreased mean arterial pressure [from 102.3 ± 4.1 to 16.0 ± 4.0 Torr ( P < 0.01) with O2 and from 86.0 ± 8.5 to 78.1 ± 8.7 Torr ( P < 0.05) with Hex] and blunted the reduction in CO [from 2.09 ± 0.15 to 1.78 ± 0.18 l/ml for O2 and from 2.91 ± 0.43 to 2.50 ± 0.35 l/ml for Hex (both P< 0.05)] and SV. However, the reduction in LVEDL and LV end-diastolic pressure was the same as with RA. There was no change in systemic vascular resistance and LVEDL during O2 and Hex relative to baseline. In the CHF pigs during apnea, there was an exaggerated reduction in CO and SV relative to our previously published data from normal sedated pigs under similar conditions. The primary difference between CHF (present study) and the normal animals is that, in addition to increased LV afterload, there was a decrease in LV preload in CHF contributing to SV depression not seen in normal animals. The decrease in LV preload during apneas in CHF may be related to effects of ventricular interdependence.

1980 ◽  
Vol 239 (4) ◽  
pp. H477-H477 ◽  
Author(s):  
Joseph A. Franciosa ◽  
Richard Heckel ◽  
Catherine Limas ◽  
Jay N. Cohn

To study heart failure from a myocardial lesion, we injected glass beads into the circumflex coronary artery of 11 conscious dogs and followed hemodynamics for 10 mo. Heart rate remained unchanged. Control mean arterial pressure of 112.3 ± 3.0 (SE) mmHg was unchanged at 1 and 3 mo, but rose to 127.2 ± 8.5 to 84.0 ± 7.6 ml . kg-1 . min-1 at 10 mo (P < 0.02), but was unchanged at 1 and 3 mo. Left ventricular end-diastolic pressure (LVEDP) averaged 4.6 ± 0.8 mmHg at control and rose to 11.8 ± 1.4 mmHg at 1 mo and 14.9 ± 2.5 mmHg at 10 mo (both P < 0.01). Systemic vascular resistance rose significantly by 10 mo. The ratio of stroke work to LVEDP fell from 13.1 ± 0.1 at control to 3.8 ± 0.5 by 10 mo (P < 0.01). In this dog model, left ventricular dysfunction is manifest early by increased LVEDP and later by high systemic vascular resistance with low cardiac output, thus suggesting a role of the peripheral circulation in the progression of heart failure.


1982 ◽  
Vol 243 (5) ◽  
pp. H748-H753 ◽  
Author(s):  
J. C. Longhurst ◽  
J. Ibarra

There is presently little information on the efferent mechanisms responsible for the reflex cardiovascular activation during passive gastric distension. Therefore, 40 cats anesthetized with alpha-chloralose were studied with passive gastric balloon distention before and during 1) two repeated gastric distensions, 2) beta-adrenergic blockade with propranolol, 3) alpha-adrenergic blockade with phentolamine, or 4) bilateral adrenalectomy. Before and during each distension mean arterial pressure, heart rate, cardiac output, rate of rise of left ventricular pressure (dP/dt) at 40 mmHg developed pressure and calculated systemic vascular resistance were determined. Repeated gastric distension caused similar hemodynamic responses without tachyphylaxis. beta-Blockade significantly reduced the increase in dP/dt from 893 +/- 362 to 150 +/- 63 mmHg/s. alpha-Blockade significantly altered the changes in mean arterial pressure from 33 +/- 5.0 to -2 +/- 4.7 mmHg and systemic vascular resistance from 0.114 +/- 0.019 to 0.004 +/- 0.031 peripheral resistance units. Bilateral adrenalectomy significantly diminished the contractile response from 525 +/- 107 to 50 +/- 85 mmHg/s but did not significantly alter the pressor and vasoconstrictor responses. We conclude that, during passive gastric distension in cats, the increase in myocardial contractility is mediated by beta-adrenergic-receptor stimulation, whereas the arterial vasoconstrictor and pressor responses are mediated by alpha-adrenergic receptor stimulation. Additionally, during gastric distension a substantial portion of the contractile response is dependent on the integrity of the adrenal glands.


2001 ◽  
Vol 280 (2) ◽  
pp. H576-H581 ◽  
Author(s):  
Wei Wang ◽  
Harold D. Schultz ◽  
Rong Ma

Our previous study (27) showed that the cardiac sympathetic afferent reflex (CSAR) was enhanced in dogs with congestive heart failure. The aim of this study was to test whether blood volume expansion, which is one characteristic of congestive heart failure, potentiates the CSAR in normal dogs. Ten dogs were studied with sino-aortic denervation and bilateral cervical vagotomy. Arterial pressure, left ventricular pressure, left ventricular epicardial diameter, heart rate, and renal sympathetic nerve activity were measured. Coronary blood flow was also measured and, depending on the experimental procedure, controlled. Blood volume expansion was carried out by infusion of isosmotic dextran into a femoral vein at 40 ml/kg at a rate of 50 ml/min. CSAR was elicited by application of bradykinin (5 and 50 μg) and capsaicin (10 and 100 μg) to the epicardial surface of the left ventricle. Volume expansion increased arterial pressure, left ventricular pressure, left ventricular diameter, and coronary blood flow. Volume expansion without controlled coronary blood flow only enhanced the RSNA response to the high dose (50 μg) of epicardial bradykinin (17. 3 ± 1.9 vs. 10.6 ± 4.8%, P < 0.05). However, volume expansion significantly enhanced the RSNA responses to all doses of bradykinin and capsaicin when coronary blood flow was held at the prevolume expansion level. The RSNA responses to bradykinin (16. 9 ± 4.1 vs. 5.0 ± 1.3% for 5 μg, P < 0.05, and 28.9 ± 3.7 vs. 10.6 ± 4.8% for 50 μg, P < 0.05) and capsaicin (29.8 ± 6.0 vs. 9.3 ± 3.1% for 10 μg, P < 0.05, and 34.2 ± 2.7 vs. 15.1 ± 2.7% for 100 μg, P < 0.05) were significantly augmented. These results indicate that acute volume expansion potentiated the CSAR. These data suggest that enhancement of the CSAR in congestive heart failure may be mediated by the concomitant cardiac dilation, which accompanies this disease state.


2003 ◽  
Vol 228 (7) ◽  
pp. 811-817 ◽  
Author(s):  
Laila Elsherif ◽  
Raymond V. Ortines ◽  
Jack T. Saari ◽  
Y. James Kang

Copper Deficiency (CuD) leads to hypertrophic cardiomyopathy in various experimental models. The morphological, electrophysiological, and molecular aspects of this hypertrophy have been under investigation for a long time. However the transition from compensated hypertrophy to decompensated heart failure has not been investigated in the study of CuD. We set out to investigate the contractile and hemodynamic parameters of the CuD mouse heart and to determine whether heart failure follows hypertrophy in the CuD heart. Dams of FVB mice were fed CuD or copper-adequate (CuA) diet starting from the third day post delivery and the weanling pups were fed the same diet for a total period of 5 weeks (pre- and postweanling). At week 4, the functional parameters of the heart were analyzed using a surgical technique for catheterizing the left ventricle. A significant decrease in left ventricle systolic pressure was observed with no significant change in heart rate, and more importantly contractility as measured by the maximal rate of left ventricular pressure rise (+dP/dt) and decline (−dP/dt) were significantly depressed in the CuD mice. However, left ventricle end diastolic pressure was elevated, and relaxation was impaired in the CuD animals; the duration of relaxation was prolonged. In addition to significant changes in the basal level of cardiac function, CuD hearts had a blunted response to the stimulation of the β-adrenergic agonist isoproterenol. Furthermore, morphological analysis revealed increased collagen accumulation in the CuD hearts along with lipid deposition. This study shows that CuD leads to systolic and diastolic dysfunction in association with histopathological changes, which are indices commonly used to diagnose congestive heart failure.


2019 ◽  
Vol 29 (12) ◽  
pp. 1565-1566
Author(s):  
Kim Sarah Plümacher ◽  
Thomas Paul ◽  
Matthias Sigler

AbstractWe report of a 26-year-old female patient who was referred to our centre with congestive heart failure (CHF). Acute myocarditis with a high Parvovirus B19 virus load was diagnosed by myocardial biopsy. CHF improved after start of ramipril 5 mg/d, metoprolol, diuretics, immunoglobins, and a 24-hour infusion of levosimendan. Soon after initiation of medical therapy, the patient started to expectorate bronchial casts with varying frequencies (three times per week to five times daily). Thorough pneumological workup, including histology of the casts, microbiology, and a CT scan of the lungs, did not reveal any cause for bronchial cast formation. Inhalative corticoids were started without any benefit. Two years later, cardiac catheterisation demonstrated normalised left ventricular function. LV end-diastolic pressure, however, was still elevated at 14 mmHg. Endomyocardial biopsies at this time were negative for virus genome. Finally, we changed afterload reduction therapy from ramipril to candesartan. Within 24 hours, expectoration of bronchial casts terminated. Four weeks later, re-exposition to ramipril prompted immediate re-appearance of cast formation, which again stopped with switching back to candesartan. Finally, we were to prove that treatment with ramipril resulted in bronchial cast formation in this patient.


2013 ◽  
Vol 19 (4) ◽  
pp. 251-259 ◽  
Author(s):  
Daniel M. Spevack ◽  
Justin Karl ◽  
Neeraja Yedlapati ◽  
Ythan Goldberg ◽  
Mario J. Garcia

2007 ◽  
Vol 106 (1) ◽  
pp. 124-131 ◽  
Author(s):  
Thomas Hentschel ◽  
Ning Yin ◽  
Alexander Riad ◽  
Helmut Habbazettl ◽  
Jörg Weimann ◽  
...  

Background Most patients with congestive heart failure (CHF) develop pulmonary venous hypertension, but right ventricular afterload is frequently further elevated by increased pulmonary vascular resistance. To investigate whether inhalation of a vasodilatory phosphodiesterase-3 inhibitor may reverse this potentially detrimental process, the authors studied the effects of inhaled or intravenous milrinone on pulmonary and systemic hemodynamics in a rat model of CHF. Methods In male Sprague-Dawley rats, CHF was induced by supracoronary aortic banding, whereas sham-operated rats served as controls. Milrinone was administered as an intravenous infusion (0.2-1 microg.kg body weight.min) or by inhalation (0.2-5 mg/ml), and effects on pulmonary and systemic hemodynamics and lung water content were measured. Results In CHF rats, intravenous infusion of milrinone reduced both pulmonary and systemic arterial blood pressure. In contrast, inhalation of milrinone predominantly dilated pulmonary blood vessels, resulting in a reduced pulmonary-to-systemic vascular resistance ratio. Repeated milrinone inhalations in 20-min intervals caused a stable reduction of pulmonary artery pressure. No hemodynamic effects were detected when 0.9% NaCl was administered instead of milrinone or when milrinone was inhaled in sham-operated rats. No indications of potentially adverse effects of milrinone inhalation in CHF, such as left ventricular volume overload, were detected. Moreover, lung edema was significantly reduced by repeated milrinone inhalation. Conclusion If these results can be confirmed in humans, inhalation of nebulized milrinone may present a novel, effective, safe, and pulmonary selective strategy for the treatment of pulmonary venous hypertension in CHF.


2008 ◽  
Vol 108 (5) ◽  
pp. 802-811 ◽  
Author(s):  
Robert A. Dyer ◽  
Jenna L. Piercy ◽  
Anthony R. Reed ◽  
Carl J. Lombard ◽  
Leann K. Schoeman ◽  
...  

Background Hemodynamic responses to spinal anesthesia (SA) for cesarean delivery in patients with severe preeclampsia are poorly understood. This study used a beat-by-beat monitor of cardiac output (CO) to characterize the response to SA. The hypothesis was that CO would decrease from baseline values by less than 20%. Methods Fifteen patients with severe preeclampsia consented to an observational study. The monitor employed used pulse wave form analysis to estimate nominal stroke volume. Calibration was by lithium dilution. CO and systemic vascular resistance were derived from the measured stroke volume, heart rate, and mean arterial pressure. In addition, the hemodynamic effects of phenylephrine, the response to delivery and oxytocin, and hemodynamics during recovery from SA were recorded. Hemodynamic values were averaged for defined time intervals before, during, and after SA. Results Cardiac output remained stable from induction of SA until the time of request for analgesia. Mean arterial pressure and systemic vascular resistance decreased significantly from the time of adoption of the supine position until the end of surgery. After oxytocin administration, systemic vascular resistance decreased and heart rate and CO increased. Phenylephrine, 50 mug, increased mean arterial pressure to above target values and did not significantly change CO. At the time of recovery from SA, there were no clinically relevant changes from baseline hemodynamic values. Conclusions Spinal anesthesia in severe preeclampsia was associated with clinically insignificant changes in CO. Phenylephrine restored mean arterial pressure but did not increase maternal CO. Oxytocin caused transient marked hypotension, tachycardia, and increases in CO.


Sign in / Sign up

Export Citation Format

Share Document