Riboflavin-Mediated Axonal Degeneration of Postnatal Retinal Ganglion Cells In Vitro is Related to the Formation of Free Radicals

1998 ◽  
Vol 24 (5) ◽  
pp. 798-808 ◽  
Author(s):  
Ralph Lucius ◽  
Rolf Mentlein ◽  
Jobst Sievers
2021 ◽  
Vol 14 (1) ◽  
pp. 50
Author(s):  
Alicia Arranz-Romera ◽  
Maria Hernandez ◽  
Patricia Checa-Casalengua ◽  
Alfredo Garcia-Layana ◽  
Irene T. Molina-Martinez ◽  
...  

We assessed the sustained delivery effect of poly (lactic-co-glycolic) acid (PLGA)/vitamin E (VitE) microspheres (MSs) loaded with glial cell-derived neurotrophic factor (GDNF) alone (GDNF-MSs) or combined with brain-derived neurotrophic factor (BDNF; GDNF/BDNF-MSs) on migration of the human adult retinal pigment epithelial cell-line-19 (ARPE-19) cells, primate choroidal endothelial (RF/6A) cells, and the survival of isolated mouse retinal ganglion cells (RGCs). The morphology of the MSs, particle size, and encapsulation efficiencies of the active substances were evaluated. In vitro release, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability, terminal deoxynucleotidyl transferase (TdT) deoxyuridine dUTP nick-end labelling (TUNEL) apoptosis, functional wound healing migration (ARPE-19; migration), and (RF/6A; angiogenesis) assays were conducted. The safety of MS intravitreal injection was assessed using hematoxylin and eosin, neuronal nuclei (NeuN) immunolabeling, and TUNEL assays, and RGC in vitro survival was analyzed. MSs delivered GDNF and co-delivered GDNF/BDNF in a sustained manner over 77 days. The BDNF/GDNF combination increased RPE cell migration, whereas no effect was observed on RF/6A. MSs did not alter cell viability, apoptosis was absent in vitro, and RGCs survived in vitro for seven weeks. In mice, retinal toxicity and apoptosis was absent in histologic sections. This delivery strategy could be useful as a potential co-therapy in retinal degenerations and glaucoma, in line with future personalized long-term intravitreal treatment as different amounts (doses) of microparticles can be administered according to patients’ needs.


2012 ◽  
Vol 38 (1) ◽  
pp. 162-173 ◽  
Author(s):  
Leandro de Araujo-Martins ◽  
Raphael Monteiro de Oliveira ◽  
Gabriela Velozo Gomes dos Santos ◽  
Renata Cláudia Celestino dos Santos ◽  
Aline Araujo dos Santos ◽  
...  

2015 ◽  
Vol 56 (13) ◽  
pp. 8019 ◽  
Author(s):  
Satoshi Yokota ◽  
Yuji Takihara ◽  
Shogo Arimura ◽  
Seiji Miyake ◽  
Yoshihiro Takamura ◽  
...  

2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Barakat Alrashdi ◽  
Bassel Dawod ◽  
Andrea Schampel ◽  
Sabine Tacke ◽  
Stefanie Kuerten ◽  
...  

Abstract Background In multiple sclerosis (MS) and in the experimental autoimmune encephalomyelitis (EAE) model of MS, the Nav1.6 voltage-gated sodium (Nav) channel isoform has been implicated as a primary contributor to axonal degeneration. Following demyelination Nav1.6, which is normally co-localized with the Na+/Ca2+ exchanger (NCX) at the nodes of Ranvier, associates with β-APP, a marker of neural injury. The persistent influx of sodium through Nav1.6 is believed to reverse the function of NCX, resulting in an increased influx of damaging Ca2+ ions. However, direct evidence for the role of Nav1.6 in axonal degeneration is lacking. Methods In mice floxed for Scn8a, the gene that encodes the α subunit of Nav1.6, subjected to EAE we examined the effect of eliminating Nav1.6 from retinal ganglion cells (RGC) in one eye using an AAV vector harboring Cre and GFP, while using the contralateral either injected with AAV vector harboring GFP alone or non-targeted eye as control. Results In retinas, the expression of Rbpms, a marker for retinal ganglion cells, was found to be inversely correlated to the expression of Scn8a. Furthermore, the gene expression of the pro-inflammatory cytokines Il6 (IL-6) and Ifng (IFN-γ), and of the reactive gliosis marker Gfap (GFAP) were found to be reduced in targeted retinas. Optic nerves from targeted eyes were shown to have reduced macrophage infiltration and improved axonal health. Conclusion Taken together, our results are consistent with Nav1.6 promoting inflammation and contributing to axonal degeneration following demyelination.


2009 ◽  
Vol 247 (10) ◽  
pp. 1353-1360 ◽  
Author(s):  
Akiyasu Kanamori ◽  
Maiko Naka ◽  
Masahide Fukuda ◽  
Makoto Nakamura ◽  
Akira Negi

Sign in / Sign up

Export Citation Format

Share Document