scholarly journals A Safe GDNF and GDNF/BDNF Controlled Delivery System Improves Migration in Human Retinal Pigment Epithelial Cells and Survival in Retinal Ganglion Cells: Potential Usefulness in Degenerative Retinal Pathologies

2021 ◽  
Vol 14 (1) ◽  
pp. 50
Author(s):  
Alicia Arranz-Romera ◽  
Maria Hernandez ◽  
Patricia Checa-Casalengua ◽  
Alfredo Garcia-Layana ◽  
Irene T. Molina-Martinez ◽  
...  

We assessed the sustained delivery effect of poly (lactic-co-glycolic) acid (PLGA)/vitamin E (VitE) microspheres (MSs) loaded with glial cell-derived neurotrophic factor (GDNF) alone (GDNF-MSs) or combined with brain-derived neurotrophic factor (BDNF; GDNF/BDNF-MSs) on migration of the human adult retinal pigment epithelial cell-line-19 (ARPE-19) cells, primate choroidal endothelial (RF/6A) cells, and the survival of isolated mouse retinal ganglion cells (RGCs). The morphology of the MSs, particle size, and encapsulation efficiencies of the active substances were evaluated. In vitro release, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability, terminal deoxynucleotidyl transferase (TdT) deoxyuridine dUTP nick-end labelling (TUNEL) apoptosis, functional wound healing migration (ARPE-19; migration), and (RF/6A; angiogenesis) assays were conducted. The safety of MS intravitreal injection was assessed using hematoxylin and eosin, neuronal nuclei (NeuN) immunolabeling, and TUNEL assays, and RGC in vitro survival was analyzed. MSs delivered GDNF and co-delivered GDNF/BDNF in a sustained manner over 77 days. The BDNF/GDNF combination increased RPE cell migration, whereas no effect was observed on RF/6A. MSs did not alter cell viability, apoptosis was absent in vitro, and RGCs survived in vitro for seven weeks. In mice, retinal toxicity and apoptosis was absent in histologic sections. This delivery strategy could be useful as a potential co-therapy in retinal degenerations and glaucoma, in line with future personalized long-term intravitreal treatment as different amounts (doses) of microparticles can be administered according to patients’ needs.

2006 ◽  
Vol 14 (16) ◽  
pp. 7144 ◽  
Author(s):  
Daniel C. Gray ◽  
William Merigan ◽  
Jessica I. Wolfing ◽  
Bernard P. Gee ◽  
Jason Porter ◽  
...  

Development ◽  
1996 ◽  
Vol 122 (3) ◽  
pp. 859-868 ◽  
Author(s):  
R.C. Marcus ◽  
L.C. Wang ◽  
C.A. Mason

The visual pathway in albino animals is abnormal in that there is a smaller number of ipsilaterally projecting retinal ganglion cells. There are two possible sites of gene action that could result in such a defect. The first site is the retina where the amount of pigmentation in the retinal pigment epithelium is correlated with the degree of ipsilateral innervation (La Vail et al. (1978) J. Comp. Neurol. 182, 399–422). The second site is the optic chiasm, the site of retinal axon divergence. We investigated these two possibilities through a combination of in vivo and in vitro techniques. Our results demonstrate that the growth patterns of retinal axons and the cellular composition of the optic chiasm in albino mice are similar to those of normally pigmented mice, consistent with the albino mutation exerting its effects in the retina, and not on the cells from the chiasmatic midline. We directly tested whether the albino mutation affects the chiasm by studying ‘chimeric’ cultures of retinal explants and chiasm cells isolated from pigmented and albino mice. Crossed and uncrossed axons from pigmented or albino retinal explants display the same amount of differential growth when grown on either pigmented or albino chiasm cells, demonstrating that the albino mutation does not disrupt the signals for retinal axon divergence associated with the albino optic chiasm. Furthermore, in vitro, a greater proportion of albino retinal ganglion cells from ventrotemporal retina, origin of uncrossed axons, behave like crossed cells, suggesting that the albino mutation acts by respecifying the numbers of retinal ganglion cells that cross the chiasmatic midline.


Sign in / Sign up

Export Citation Format

Share Document