scholarly journals Interaction of Postsynaptic Receptor Saturation with Presynaptic Mechanisms Produces a Reliable Synapse

Neuron ◽  
2002 ◽  
Vol 36 (6) ◽  
pp. 1115-1126 ◽  
Author(s):  
Kelly A. Foster ◽  
Anatol C. Kreitzer ◽  
Wade G. Regehr
2013 ◽  
pp. 32-36
Author(s):  
David Papke ◽  
Claudio Grosman

2002 ◽  
Vol 14 (11) ◽  
pp. 843-845 ◽  
Author(s):  
B. G. Jenks ◽  
D. T. W. M. Ouwens ◽  
M. W. Coolen ◽  
E. W. Roubos ◽  
G. J. M. Martens

1996 ◽  
Vol 76 (1) ◽  
pp. 448-460 ◽  
Author(s):  
C. A. Lewis ◽  
D. S. Faber

1. To identify the type(s) and properties of inhibitory postsynaptic receptor(s) involved in synaptic transmission in cultured rat embryonic spinal cord and medullary neurons, we have used whole cell patch-clamp techniques to record miniature inhibitory postsynaptic currents (mIPSCs) in the presence of tetrodotoxin, DL-2-amino-5-phosphonovaleric acid, and 6-cyano-7-nitroquinoxaline-2,3-dione. 2. The mIPSCs recorded from both spinal cord and medullary neurons had skewed amplitude distributions. 3. The glycinergic antagonist strychnine and the GABAergic antagonist bicuculline each decreased both the frequency and mean peak amplitudes of mIPSCs. We conclude that both glycine and gamma-aminobutyric acid (GABA) are neurotransmitters at inhibitory synapses in our cultured cells. 4. Most (approximately 96-97%) mIPSCs decay with single-exponential time constants, and decay time distributions were consistently best fitted by the sum of four Gaussians with decay constants as follows: D1 = 5.8 +/- 0.1 (SE) ms (n = 63), D2 = 12.2 +/- 0.2 ms (n = 61), D3 = 23.2 +/- 0.4 ms (n = 54), and D4 = 44.7 +/- 1.0 ms (n = 57). We conclude that the four classes of decay times represent kinetically different inhibitory postsynaptic receptor populations. 5. Strychnine and bicuculline usually had one of two different effects on the mIPSC decay time constant distributions; either selective decreases in the frequency of mIPSCs with decay times in certain classes (i.e., the D1 class was reduced by bicuculline, the D2 class by strychnine, and the D3 and D4 classes by both antagonists) or a nonselective depression in the frequency of mIPSCs with decay times in all four classes. The particular effect observed in a given neuron was correlated with the presence or absence of ATP and guanosine 5'-triphosphate (GTP) in the patch pipette. Namely, in 71% of the antagonist applications where the pipette contained ATP and GTP, the result was a nonselective decrease in mIPSCs in all decay time constant classes. Conversely, in 54% of the antagonist applications in their absence, the result was a selective decrease in the frequency of mIPSCs in specific decay time constant classes. 6. In some experiments, mIPSCs reappeared in antagonist solution after an essentially complete block. Recovery from block in the continued presence of antagonist was never observed in the absence of ATP and GTP (8 neurons), and, at the same time, 5 of 9 neurons patched with ATP and GTP in the pipette did show recovery (56%).


1998 ◽  
Vol 79 (4) ◽  
pp. 1977-1988 ◽  
Author(s):  
Marco Canepari ◽  
Enrico Cherubini

Canepari, Marco and Enrico Cherubini. Dynamics of excitatory transmitter release: analysis of synaptic responses in CA3 hippocampal neurons after repetitive stimulation of afferent fibers. J. Neurophysiol. 79: 1977–1988, 1998. The patch-clamp technique (whole cell configuration) was used to record excitatory postsynaptic currents (EPSCs) evoked by repetitive stimulation (4 pulses at 50-ms intervals) of afferent fibers in the stratum lucidum-radiatum. Different synaptic behaviors (EPSC patterns) were classified in terms of facilitation or depression of the mean amplitude of the second, third, and fourth EPSC with respect to the previous one. A large variety of EPSC patterns was observed by stimulating different afferent fibers. Experiments with the mGluR2/mGluR3 agonist 2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV) (1 μM), a compound that reduces release at mossy but not at associative commissural fibers and therefore allows to identify the origin of synaptic responses, showed that particular EPSC patterns could not be associated to the activation of a specific type of synaptic input. To investigate the role of the probability of release in the dynamics of synaptic activity, the extracellular calcium concentration was varied from 0.8 to 4 mM in several experiments. EPSC patterns dominated by depression, characteristics of high release probability conditions, could be observed in the majority of the cases in the presence of higher calcium concentrations. A quantitative model for dynamics of transmitter release has been developed. Experimental results were compared with data computed with the model taking into account the probability of release and the time course of reavailability. This work indicates that short-term changes of presynaptic conditions occurring during a train of action potentials can account for the high variability of EPSC responses. The model that is proposed also suggests a general method of experimental data analysis to investigate the possible presynaptic mechanisms underlying long-lasting changes in synaptic efficacy.


Sign in / Sign up

Export Citation Format

Share Document