cultured cells
Recently Published Documents





2022 ◽  
Vol 3 (1) ◽  
pp. 101018
Monami Ogura ◽  
Takayuki Shima ◽  
Tamotsu Yoshimori ◽  
Shuhei Nakamura

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 300
Hiroshi Ohguro ◽  
Yosuke Ida ◽  
Fumihito Hikage ◽  
Araya Umetsu ◽  
Hanae Ichioka ◽  

To elucidate the currently unknown mechanisms responsible for the diverse biological aspects between two-dimensional (2D) and three-dimensional (3D) cultured 3T3-L1 preadipocytes, RNA-sequencing analyses were performed. During a 7-day culture period, 2D- and 3D-cultured 3T3-L1 cells were subjected to lipid staining by BODIPY, qPCR for adipogenesis related genes, including peroxisome proliferator-activated receptor γ (Pparγ), CCAAT/enhancer-binding protein alpha (Cebpa), Ap2 (fatty acid-binding protein 4; Fabp4), leptin, and AdipoQ (adiponectin), and RNA-sequencing analysis. Differentially expressed genes (DEGs) were detected by next-generation RNA sequencing (RNA-seq) and validated by a quantitative reverse transcription–polymerase chain reaction (qRT–PCR). Bioinformatic analyses were performed on DEGs using a Gene Ontology (GO) enrichment analysis and an Ingenuity Pathway Analysis (IPA). Significant spontaneous adipogenesis was observed in 3D 3T3-L1 spheroids, but not in 2D-cultured cells. The mRNA expression of Pparγ, Cebpa, and Ap2 among the five genes tested were significantly higher in 3D spheroids than in 2D-cultured cells, thus providing support for this conclusion. RNA analysis demonstrated that a total of 826 upregulated and 725 downregulated genes were identified as DEGs. GO enrichment analysis and IPA found 50 possible upstream regulators, and among these, 6 regulators—transforming growth factor β1 (TGFβ1), signal transducer and activator of transcription 3 (STAT3), interleukin 6 (IL6), angiotensinogen (AGT), FOS, and MYC—were, in fact, significantly upregulated. Further analyses of these regulators by causal networks of the top 14 predicted diseases and functions networks (IPA network score indicated more than 30), suggesting that STAT3 was the most critical upstream regulator. The findings presented herein suggest that STAT3 has a critical role in regulating the unique biological properties of 3D spheroids that are produced from 3T3-L1 preadipocytes.

2022 ◽  
Alexis Carpenter ◽  
Rollie J Clem

Arboviruses continue to threaten a significant portion of the human population, and a better understanding is needed of the determinants of successful arbovirus infection of arthropod vectors. Avoiding apoptosis has been shown to be one such determinant. Previous work showed that a Sindbis virus (SINV) construct called MRE/rpr that expresses the pro-apoptotic protein Reaper via a duplicated subgenomic promoter had a reduced ability to orally infect Aedes aegypti mosquitoes at 3 days post-blood meal (PBM), but this difference diminished over time as virus variants containing deletions in the inserted reaper gene rapidly predominated. The goal of this study was to generate a SINV construct that more stably expressed Reaper, in order to further clarify the effect of midgut apoptosis on disseminated infection in Ae. aegypti. We did this by inserting reaper as an in-frame fusion into the structural open reading frame (ORF) of SINV. This construct, MRE/rprORF, successfully expressed Reaper, replicated similarly to MRE/rpr in cell lines, and induced apoptosis in cultured cells and in mosquito midgut tissue. Mosquitoes that fed on blood containing MRE/rprORF developed less midgut and disseminated infection when compared to MRE/rpr or a control virus up to at least 7 days PBM, when less than 50% of mosquitoes that ingested MRE/rprORF had detectable disseminated infection, compared with around 80% or more of mosquitoes fed with MRE/rpr or control virus. However, virus titer in mosquitoes infected with MRE/rprORF was not significantly different from control virus, suggesting that induction of apoptosis by expression of Reaper by this method can reduce infection prevalence, but if infection is established then apoptosis induced by this method has limited ability to continue to suppress replication.

Zhao-Feng Li ◽  
Lei Cui ◽  
Mi-Mi Jin ◽  
Dong-Yan Hu ◽  
Xiao-Gang Hou ◽  

Parkinson's disease (PD) is featured with α-synuclein-based Lewy body pathology, which however was difficult to observe in conventional two-dimensional (2D) cell culture and even in animal models. We herein aimed to develop a three-dimensional (3D) cellular model of PD to recapitulate the α-synuclein pathologies. All-trans-retinoic acid-differentiated human SH-SY5Y cells and Matrigel were optimized for 3D construction. The 3D cultured cells displayed higher tyrosine hydroxylase expression and improved dopaminergic-like phenotypes than 2D cells as suggested by RNA-sequencing analyses. Multiple forms of α-synuclein, including monomer, low and high molecular weight oligomers, were differentially present in the 2D and 3D cells, but mostly remained unchanged upon the MPP+ or rotenone treatment. Phosphorylated α-synuclein was accumulated and detergent-insoluble α-synuclein fraction was observed in the neurotoxin-treated 3D cells. Importantly, Lewy body-like inclusions were captured in the 3D system, including proteinase K-resistant α-synuclein aggregates, ubiquitin aggregation, β-amyloid and β-sheet protein deposition. The study provides a unique and convenient 3D model of PD which recapitulates critical α-synuclein pathologies and should be useful in multiple PD-associated applications.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 484
Luke Erber ◽  
Shirelle Liu ◽  
Yao Gong ◽  
Phu Tran ◽  
Yue Chen

Iron and oxygen deficiencies are common features in pathophysiological conditions, such as ischemia, neurological diseases, and cancer. Cellular adaptive responses to such deficiencies include repression of mitochondrial respiration, promotion of angiogenesis, and cell cycle control. We applied a systematic proteomics analysis to determine the global proteomic changes caused by acute hypoxia and chronic and acute iron deficiency (ID) in hippocampal neuronal cells. Our analysis identified over 8600 proteins, revealing similar and differential effects of each treatment on activation and inhibition of pathways regulating neuronal development. In addition, comparative analysis of ID-induced proteomics changes in cultured cells and transcriptomic changes in the rat hippocampus identified common altered pathways, indicating specific neuronal effects. Transcription factor enrichment and correlation analysis identified key transcription factors that were activated in both cultured cells and tissue by iron deficiency, including those implicated in iron regulation, such as HIF1, NFY, and NRF1. We further identified MEF2 as a novel transcription factor whose activity was induced by ID in both HT22 proteome and rat hippocampal transcriptome, thus linking iron deficiency to MEF2-dependent cellular signaling pathways in neuronal development. Taken together, our study results identified diverse signaling networks that were differentially regulated by hypoxia and ID in neuronal cells.

Augusto F. Uberti ◽  
Natália Callai-Silva ◽  
Matheus V. C. Grahl ◽  
Angela R. Piovesan ◽  
Eduarda G. Nachtigall ◽  

Alzheimer’s disease (AD) causes dementia and memory loss in the elderly. Deposits of beta-amyloid peptide and hyperphosphorylated tau protein are present in AD’s brain. A filtrate of Helicobacter pylori’s culture was previously found to induce hyperphosphorylation of tau in vivo, suggesting that bacterial exotoxins could permeate the blood brain barrier and directly induce tau’s phosphorylation. H. pylori, which infects ~60% of the world population and causes gastritis and gastric cancer, produces a pro-inflammatory urease (HPU). Here the neurotoxic potential of HPU was investigated in cultured cells and in rats. SH-SY5Y neuroblastoma cells exposed HPU (50-300 nM) produced reactive oxygen species (ROS) and had an increased [Ca2+]i. HPU-treated BV-2 microglial cells produced ROS, cytokines IL-1β and TNF-α, expressed Iba1 and showed reduced viability, consistent with a neurotoxic effect of HPU. Rats received daily i.p. HPU (5 µg) for 7 days. Hyperphosphorylation of tau at Thr205, Ser199 and Ser396 sites was seen in hippocampal homogenates of treated rats, with no alterations in total tau or GSK-3b levels. HPU was not detected in the brain homogenates. Behavioral tests were performed to assess cognitive impairments. Our findings support previous data suggesting an association between infection by H. pylori and tauopathies such as AD, possibly mediated by its urease.

2022 ◽  
Carolina Camelo ◽  
Anna Körte ◽  
Thea Jacobs ◽  
Stefan Luschnig

Extracellular vesicles (EVs) comprise diverse types of cell-released membranous structures that are thought to play important roles in intercellular communication. While the formation and functions of EVs have been investigated extensively in cultured cells, studies of EVs in vivo have remained scarce. We report here that EVs are present in the developing lumen of tracheal tubes in Drosophila embryos. We defined two distinct EV subpopulations, one of which contains the Munc13-4 homologue Staccato (Stac) and is spatially and temporally associated with tracheal tube fusion (anastomosis) events. The formation of Stac-positive luminal EVs depends on the tracheal tip-cell-specific GTPase Arl3, which is also required for the formation of Stac-positive multivesicular bodies, suggesting that Stac-EVs derive from fusion of Stac-MVBs with the luminal membrane in tip cells during anastomosis formation. The GTPases Rab27 and Rab35 cooperate downstream of Arl3 to promote Stac-MVB formation and tube fusion. We propose that Stac-MVBs act as membrane reservoirs that facilitate tracheal lumen fusion in a process regulated by Arl3, Rab27, Rab35, and Stac/Munc13-4.

2022 ◽  
Olga V Volpert ◽  
Eve Gershun ◽  
Katia Elgart ◽  
Vrinda Kalia ◽  
Haotian Wu ◽  

Most approaches to extracellular vesicle (EV) characterization focus on EV size or density. However, such approaches provide few clues regarding EV origin, molecular composition, and function. New methods to characterize the EV surface proteins may aid our understanding of their origin, physiological roles, and biomarker potential. Recently developed immunoassays for intact EVs based on ELISA, NanoView, SIMOA and MesoScale platforms are highly sensitive, but have limited multiplexing capabilities, whereas MACSPlex FACS enables the detection of multiple EV surface proteins, but requires significant quantities of purified EVs, which limits its adoption. Here, we describe a novel Luminex-based immunoassay, which combines multiplexing capabilities with high sensitivity and, importantly, bypasses the enrichment and purification steps that require larger sample volumes. We demonstrate the method specificity for detecting EV surface proteins using multiple EV depletion techniques, EVs of specific cellular origin isolated from culture media, and by co-localization with established EV surface markers. Using this novel approach, we elucidate differences in the tetraspanin profiles of the EVs carrying erythrocyte and neuron markers. Using size exclusion chromatography, we show that plasma EVs of putative neuronal and tissue macrophage origin are eluted in fractions distinct from those derived from erythrocytes, or from their respective cultured cells. In conclusion, our novel multiplexed assay differentiates between EVs from erythrocytes, macrophages, and neurons, and offers a new means for capture, classification, and profiling of EVs from diverse sources.

2022 ◽  
Nydia Tejeda-Munoz ◽  
Marco Morselli ◽  
Yuki Moriyama ◽  
Pooja Sheladiya ◽  
Matteo Pellegrini ◽  

During canonical Wnt signaling, the Lrp6 and Frizzled co-receptors bind to the Wnt growth factor and the complex is endocytosed and sequestered together with Glycogen Synthase Kinase 3 (GSK3), Dishevelled (Dvl), and Axin inside the intraluminal vesicles of late endosomes, known as multivesicular bodies (MVBs). Here we present experiments showing that Wnt causes the endocytosis of focal adhesion (FA) proteins and depletion of Integrin β 1 (ITGβ1) from the cell surface. FAs and integrins link the cytoskeleton to the extracellular matrix. Wnt-induced endocytosis caused ITGβ1 depletion from the plasma membrane and was accompanied by striking changes in the actin cytoskeleton. In situ protease protection assays in cultured cells showed that ITGβ1 was sequestered within membrane-bounded organelles that corresponded to Wnt-induced MVBs containing GSK3 and FA-associated proteins. An in vivo model using Xenopus embryos dorsalized by Wnt8 mRNA showed that ITGβ1 depletion decreased Wnt signaling. The finding of a crosstalk between two mayor signaling pathways, canonical Wnt and focal adhesions, should be relevant to human cancer and cell biology.

Sign in / Sign up

Export Citation Format

Share Document